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Введение

Парадигма доверенного искусственного интеллекта направлена на обес­
печение возможности применения методов машинного обучения в критически
важных областях, включая государственное управление, критическую инфра­
структуру, медицину и финансовые системы. В рамках этой парадигмы модели
должны не только демонстрировать высокое качество предсказаний, но и
обладать формализованными механизмами оценки собственной уверенности,
определения границ применимости и принятия статистически обоснованных ре­
шений [1]. Реализация этих требований в общем виде невозможна без строгой
математической теории, обеспечивающей формальные гарантии корректности
работы моделей.

Однако в настоящее время такая теория для современных методов машин­
ного обучения в целом отсутствует. На практике преобладают эмпирические
подходы, ориентированные главным образом на оптимизацию стандартных
метрик качества. Несмотря на это, нейросетевые модели получили широкое
распространение благодаря своей универсальности и способности эффективно
решать широкий круг прикладных задач. Но, как правило, они не обеспечива­
ют строгого статистического обоснования принимаемых решений и контроля
области своей применимости.

В то же время в математической статистике разработан развитый тео­
ретический аппарат для задач классификации, позволяющий получать интер­
претируемые результаты и строгие вероятностные гарантии. Однако область
применимости классических статистических методов существенно уже по
сравнению с методами машинного обучения и, в частности, нейросетевыми моде­
лями, что ограничивает их использование в современных прикладных задачах.

Исследование основано на положениях российских и зарубежных науч­
ных школ теории распознавания образов. Методологическую базу составляют
труды Ю. И. Журавлёва, К. В. Рудакова и К. В. Воронцова, а также иссле­
дования М. И. Забежайло, А. А. Грушо и А. К. Горшенина. Значительное
влияние оказали фундаментальные работы по теории статистического обуче­
ния В. Н. Вапника, А. Я. Червоненкиса и Л. Девроя и вероятностным моделям
К. Бишопа.
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Настоящая работа делает шаг в направлении построения математической
теории нейросетевых моделей на основе методов математической статисти­
ки. Исследование сосредоточено на задачах классификации в пространствах
малой размерности, что позволяет сохранить формальную строгость получае­
мых результатов. В рамках работы предлагается статистически обоснованный
доверенный классификатор на основе многослойного персептрона, обеспечиваю­
щий формализованную оценку уверенности и определение границ компетенции
модели, тем самым закладывая основу для дальнейшего развития теории дове­
ренного искусственного интеллекта.

Целью данной работы является разработка методики построения дове­
ренных классификаторов на основе многослойного персептрона для данных
малой размерности, обеспечивающей способность к отказу от классификации
вне носителя распределения, устойчивость к дисбалансу классов и интерпрети­
руемость принимаемых решений.

Для достижения поставленной цели необходимо было решить следующие
задачи:

1. Разработать метод построения доверенного объяснимого классифи­
катора на основе многослойного персептрона, обеспечивающего ста­
тистически обоснованное оценивание апостериорных вероятностей и
устойчивость к дисбалансу классов.

2. Разработать метод генерации синтетических данных, сохраняющих гео­
метрические и статистические свойства исходного распределения, на
основе разработанного метода.

3. Провести экспериментальное исследование разработанных методов для
оценки устойчивости классификатора к дисбалансу классов, коррект­
ности работы вне носителя обучающего распределения и качества
генерируемых синтетических данных.

4. Разработать интеллектуальную систему машинного обучения, реали­
зующую предложенные методы и обеспечивающую решение задач
классификации данных малой размерности в условиях дисбаланса клас­
сов и высокой неопределённости вне носителя распределения.

Основные положения, выносимые на защиту:
1. Теоретическая база непараметрического оценивания в условиях дис­

баланса классов и малой размерности. Сформулированы и доказаны
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теоремы, обосновывающие асимптотическую связь между нейросетевой
и гистограммной оценками апостериорной вероятности.

2. Метод построения статистически обоснованного объяснимого байесов­
ского классификатора на основе многослойного персептрона и дерева
решений.

3. Метод построения унарного классификатора, устойчивого к дисбалансу
классов и позволяющего генерировать синтетические данные.

4. Интеллектуальная система машинного обучения, реализующая пред­
ложенные методы и обеспечивающая решение задач классификации
данных малой размерности в условиях дисбаланса классов и высокой
неопределённости вне носителя распределения.

Перечисленные положения относятся к направлениям исследований 4, 7, 8
и 9 паспорта специальности 2.3.5 «Математическое и программное обеспечение
вычислительных систем, комплексов и компьютерных сетей»:

– п. 4. Интеллектуальные системы машинного обучения, управления база­
ми данных и знаний, инструментальные средства разработки цифровых
продуктов.

– п. 7. Модели, методы, архитектуры, алгоритмы, форматы, протоколы
и программные средства человеко-машинных интерфейсов, компьютер­
ной графики, визуализации, обработки изображений и видеоданных,
систем виртуальной реальности, многомодального взаимодействия в со­
циокиберфизических системах.

– п. 8. Модели и методы создания программ и программных систем для
параллельной и распределенной обработки данных, языки и инструмен­
тальные средства параллельного программирования.

– п. 9. Модели, методы, алгоритмы, облачные технологии и программная
инфраструктура организации глобально распределенной обработки дан­
ных.

Научная новизна: разработан метод построения доверенного классифи­
катора на основе многослойного персептрона, обеспечивающего формальные
гарантии корректного поведения модели. Предложен подход, позволяющий
трактовать выход персептрона как статистически обоснованную оценку апо­
стериорной вероятности и реализующий механизм осознанного отказа от
классификации для объектов вне носителя обучающего распределения, что
отличает его от стандартных нейросетевых методов, не имеющих подобного
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теоретического обоснования. Предложен метод унарной классификации, устра­
няющий проблему дисбаланса классов без искажающих процедур балансировки
и позволяющий генерировать синтетические данные, сохраняющие геометри­
ческие и статистические свойства исходной выборки. Предложен инструмент
объяснения решений классификатора – дерево eXBTree, обеспечивающее ин­
терпретируемость модели за счёт анализа правил принятия решений и схожих
прецедентов. Теоретической основой подхода является доказанная теорема о
корректном поведении классификатора вне носителя распределения, что вносит
вклад в развитие математических основ доверенного искусственного интеллек­
та для нейросетевых моделей.

Теоретическая и практическая значимость
Теоретическая значимость работы заключается в развитии статистиче­

ских основ доверенной классификации на основе многослойного персептрона
и в формировании формализованного подхода к оценке уверенности предска­
заний нейросетевых моделей. В работе сформулирован и доказан ряд теорем,
позволяющих статистически обосновать построение доверенных классифика­
торов, определить границы компетенции модели и описать её поведение вне
носителя распределения, включая механизм отказа от классификации. Уста­
новлена асимптотическая связь между нейросетевой и гистограммной оценками
апостериорной вероятности, что подтверждает состоятельность предложенного
подхода. Полученные результаты расширяют теоретическую базу непарамет­
рического оценивания в условиях дисбаланса классов и малой размерности и
формируют основу для построения математически строгой теории доверенного
искусственного интеллекта.

Практическая значимость работы заключается в использовании предло­
женных методов при разработке инструментов доверенного искусственного
интеллекта в Исследовательском Центре Доверенного Искусственного Интел­
лекта (ИЦДИИ) ИСП РАН. Разработанный классификатор применяется для
анализа данных в условиях дисбаланса классов, обеспечивая интерпретируе­
мость решений и повышение надёжности за счёт механизма автоматического
отказа от классификации в недостоверных областях. Метод генерации синтети­
ческих данных, сохраняющих статистическую структуру оригинала, использу­
ется для безопасного расширения обучающих выборок. Реализованная система
обеспечивает воспроизводимость и практическое применение подхода в зада­
чах, требующих доверенного принятия решений.
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Апробация работы. Основные результаты работы были представлены
на следующих конференциях и семинарах:

– Форум «Цифровая экономика. Технологии доверенного искусственного
интеллекта», Москва, 25 мая 2023 г.

– 32-я научно-техническая конференция «Методы и технические средства
обеспечения безопасности информации» (МиТСОБИ), Санкт-Петер­
бург, 26-29 июня 2023 г.

– WAIT: Workshop on Artificial Intelligence Trustworthiness, Almaty,
Kazakhstan, 24 апреля 2024 г.

– Международная конференция «Иванниковские чтения», Великий Нов­
город, 17-18 мая 2024 г.

– II форум «Технологии доверенного искусственного интеллекта»,
Москва, 27 мая 2024 г.

– 33-я научно-техническая конференция «Методы и технические средства
обеспечения безопасности информации» (МиТСОБИ), Санкт-Петер­
бург, 24-27 июня 2024 г.

– MathAI 2025 The International Conference dedicated to mathematics in
artificial intelligence, March 24-28, 2025 г.

– III форум «Технологии Доверенного Искусственного Интеллекта»,
Москва, 20 мая 2025 г.

– 34-я всероссийская конференция «Методы и технические средства обес­
печения безопасности информации» (МиТСОБИ), Санкт-Петербург,
23-26 июня 2025 г.

– Международная конференция «Иванниковские чтения», Иркутск, 26-27
июня 2025 г.

Личный вклад. Все выносимые на защиту результаты получены лич­
но автором.
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Публикации. Основные результаты по теме диссертации изложены
в 9 печатных изданиях, 6 из которых изданы в журналах, рекомендованных
ВАК, 4 — в периодических научных журналах, индексируемых Web of Science
и Scopus, 3 — в тезисах докладов. Зарегистрированы 4 программы для ЭВМ.

Личный вклад в совместные публикации является определяющим. Из 6
основных публикаций по теме диссертации одна работа [2] выполнена без со­
авторов. В основных публикациях по теме диссертации автору принадлежат:
метод статистически обоснованного объяснимого байесовского классификатора
на основе многослойного персептрона и дерева решений eXBTree и соответ­
ствующая формулировка теоремы, а также разработка системы визуализации
DenseNetworkVisualizer [3], теорема, обосновывающая асимптотическую связь
между нейросетевой и гистограммной оценками апостериорной вероятности,
и метод построения унарного классификатора, устойчивого к дисбалансу
классов [4], метод генерации синтетических данных [5; 6], метод обучения клас­
сификатора на основе многослойного персептрона на данных с пропусками [7].

Объём и структура работы. Диссертация состоит из введения, 5 глав,
заключения и 2 приложений. Полный объём диссертации составляет 154 стра­
ницы, включая 41 рисунок и 6 таблиц. Список литературы содержит 102 на­
именования.
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Глава 1. Проблемы доверия в задаче классификации

1.1 Введение в задачу классификации и требования доверенных
систем

Задача классификации является одной из базовых и наиболее изученных
задач машинного обучения с учителем. В формальной постановке по заданной
обучающей выборке

𝒟𝑛 = {(x𝑖, 𝑦𝑖)}𝑛𝑖=1,

где x𝑖 ∈ 𝒳 ⊆ R𝑑 – вектор признаков объекта, а 𝑦𝑖 ∈ 𝒴 = {1, 2, . . . , 𝐶} –
соответствующая метка класса, требуется построить решающую функцию

ℎ : 𝒳 → 𝒴 ,

минимизирующую вероятность ошибочной классификации на новых объектах,
порождённых тем же, неизвестным распределением данных [8].

В традиционной постановке эффективность классификатора оценивается
по его обобщающей способности, измеряемой с помощью стандартных метрик
качества, таких как accuracy, precision, recall и 𝑓1-мера, вычисляемых на неза­
висимой тестовой выборке. Однако в задачах, относящихся к ответственным
прикладным областям – включая медицинскую диагностику, анализ клиниче­
ских рисков, финансовые и технические системы поддержки принятия решений,
– данных критериев оказывается недостаточно. В таких сценариях возрастает
значимость не только точности предсказаний, но и их надёжности, интерпре­
тируемости и статистической обоснованности, что приводит к необходимости
разработки так называемых доверенных интеллектуальных систем, которые
должны удовлетворять комплексу дополнительных требований, обеспечиваю­
щих их надёжность, прозрачность и безопасность.

– Способность к оценке собственной уверенности. Классификатор
должен предоставлять не только точечное предсказание класса, но и ко­
личественную оценку уверенности или апостериорного распределения
вероятностей по классам. Это позволяет различать ситуации, в которых
принятое решение является статистически обоснованным, и случаи, ха­
рактеризующиеся высокой степенью неопределённости.
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– Корректное определение области компетенции и обнаружение
выхода за распределение. Модель должна учитывать ограничения,
накладываемые обучающим распределением данных. При поступлении
объекта, существенно отличающегося от обучающих примеров и нахо­
дящегося вне носителя распределения, система не должна формировать
произвольное предсказание. Необходим формальный механизм выявле­
ния таких наблюдений.

– Наличие механизма отказа от принятия решения. В ситуаци­
ях, когда уровень уверенности модели оказывается ниже допустимого
порога либо объект идентифицируется как находящийся вне области
компетенции, классификатор должен обладать формализованной про­
цедурой отказа от автоматического решения с возможностью передачи
управления эксперту или запроса дополнительной информации.

– Интерпретируемость и объяснимость принимаемых решений.
В критически значимых приложениях требуется не только результат
классификации, но и возможность анализа факторов, повлиявших на
его получение. Объяснимость решений является необходимым условием
аудита, повышения доверия пользователей и последующего совершен­
ствования моделей в рамках парадигмы объяснимого искусственного
интеллекта (XAI).

– Устойчивость к неблагоприятным и аномальным условиям.
Классификатор должен сохранять корректность поведения при нали­
чии шума, выбросов, существенного дисбаланса классов, а также в
условиях целенаправленных состязательных воздействий, направлен­
ных на искажение его выходных решений.

Парадигма доверенного искусственного интеллекта смещает акцент с экс­
тремальной оптимизации точечных метрик качества в сторону построения
надёжных, предсказуемых и прозрачных моделей, корректно интегрируемых
в сложные процессы принятия решений. Вместе с тем, как будет показано в
последующих разделах данной главы, большинство широко используемых ме­
тодов классификации в той или иной степени не удовлетворяют указанным
требованиям, в особенности в части корректной работы с неопределённостью,
определения границ собственной компетенции и обеспечения объяснимости при­
нимаемых решений.
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1.2 Методы классификации

Историческое развитие методов классификации отражает постепенный
переход от статистически строгих моделей, основанных на явно сформулиро­
ванных предположениях о природе данных, к более универсальным и гибким
алгоритмам, ориентированным преимущественно на достижение высокой пред­
сказательной точности на выборках сложной и слабо структурированной
природы. Каждый из сформировавшихся классов методов обладает собствен­
ными достоинствами, однако одновременно характеризуется ограничениями,
существенными при построении доверенных и статистически обоснованных си­
стем принятия решений.

К числу наиболее ранних и теоретически проработанных подходов от­
носятся непараметрические методы классификации, основанные на оценке
плотности распределения или локальной структуры данных. В частности, ги­
стограммные методы и метод 𝑘 ближайших соседей (𝑘-NN) опираются на
минимальные априорные предположения и обладают асимптотическими га­
рантиями состоятельности при выполнении достаточно общих условий [9].
Гистограммные классификаторы аппроксимируют распределение данных пу­
тём разбиения пространства признаков на ячейки, тогда как 𝑘-NN принимает
решение на основе локального большинства в окрестности объекта. Эти мето­
ды имеют прозрачную статистическую интерпретацию и естественным образом
отражают локальную структуру данных, однако их практическое примене­
ние существенно ограничено ростом размерности пространства признаков, что
приводит к резкому ухудшению обобщающей способности и вычислительной
эффективности.

Классические линейные методы, к которым относятся логистическая ре­
грессия и метод опорных векторов (Support Vector Machine, SVM), основаны
на построении линейной разделяющей поверхности в пространстве признаков
[10]. Их ключевыми преимуществами являются сравнительная простота, хо­
рошая теоретическая изученность, а в случае SVM — строгое обоснование
в рамках принципа минимизации структурного риска. Вместе с тем вырази­
тельная способность данных моделей ограничена предположением о линейной
разделимости классов. На практике это предположение часто нарушается и ком­
пенсируется за счёт нелинейных преобразований признакового пространства, в
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частности с использованием ядерных функций, что приводит к усложнению
модели и снижению прозрачности интерпретации получаемых решений.

Деревья решений реализуют принципиально иной, непараметрический
подход к классификации, формируя решающее правило в виде иерархической
структуры элементарных условий на значения признаков [11]. К их существен­
ным достоинствам относятся устойчивость к монотонным преобразованиям
признаков, возможность работы с данными смешанной природы, а также
высокая интерпретируемость, поскольку структура дерева непосредственно от­
ражает логику принятия решений. В то же время одиночные деревья решений
обладают высокой дисперсией и склонны к переобучению, что выражается в
значительной чувствительности к малым изменениям обучающей выборки.

Для повышения устойчивости и качества обобщения были разработа­
ны ансамблевые методы, агрегирующие предсказания множества базовых
классификаторов. Метод случайного леса (Random Forest) сочетает идеи
бутстреп-агрегирования и случайного подмножества признаков при постро­
ении каждого дерева, формируя ансамбль слабо коррелированных моделей
[12]. Такой подход позволяет существенно снизить дисперсию по сравнению
с одиночным деревом и одновременно сохранить возможность оценки отно­
сительной важности признаков. Градиентный бустинг (Gradient Boosting),
напротив, строит ансамбль последовательно, обучая каждую последующую мо­
дель аппроксимировать ошибки предыдущих [13]. Это обеспечивает высокую
аппроксимационную способность и, как правило, превосходную предсказатель­
ную точность. Однако за счёт усложнения структуры ансамбля данные методы
утрачивают интерпретируемость, превращаясь в модели с трудно прослежива­
емой логикой принятия решений.

Наиболее гибкими с точки зрения аппроксимации сложных нелинейных
зависимостей являются нейросетевые модели, в частности многослойные пер­
септроны (Multilayer Perceptron, MLP) [14]. Их архитектура, представляющая
собой композицию линейных преобразований и нелинейных функций актива­
ции, теоретически позволяет аппроксимировать произвольные непрерывные
функции на компакте. В частности, показано, что глубинные ReLU-сети могут
достигать оптимальных скоростей аппроксимации в зависимости от гладкости
функции и числа параметров, причём существуют различимые фазы аппрокси­
мации, характеризующие соотношение глубины сети и числа весов [15]. Вместе
с тем высокая выразительная способность нейронных сетей достигается ценой
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значительного увеличения числа параметров, утраты интерпретируемости и
высокой зависимости качества обучения от объёма и репрезентативности до­
ступных данных.

Таким образом, в современных методах классификации наблюдается
фундаментальный компромисс между интерпретируемостью, теоретической
обоснованностью и гибкостью модели. Методы с прозрачной структурой и стро­
гими статистическими свойствами, включая гистограммные классификаторы,
𝑘-NN, линейные модели и деревья решений, ограничены в способности описы­
вать сложные зависимости и плохо масштабируются по размерности. В то же
время наиболее мощные по точности подходы, такие как ансамблевые методы и
глубокие нейросетевые модели, функционируют как “чёрные ящики” и не содер­
жат встроенных механизмов для оценки достоверности предсказаний, особенно
в условиях, выходящих за пределы обучающего распределения. Ни один из ши­
роко применяемых классов методов не предлагает целостного и статистически
обоснованного решения для работы с объектами вне носителя распределения и
для принятия решений в условиях высокой неопределённости, что и определяет
актуальность дальнейшего рассмотрения данной проблемы.

1.3 Подходы к решению проблем доверия: детекция выхода за
распределение и обработка дисбаланса

Фундаментальные проблемы доверия, присущие большинству класси­
ческих и современных методов классификации, связаны с некорректным
поведением на объектах вне носителя обучающего распределения и чув­
ствительностью к дисбалансу классов. Существенную роль при этом играет
неопределённость предсказаний моделей, обусловленная как стохастической
природой данных, так и ограниченностью обучающей выборки и модели. Эти
эффекты приводят к снижению надёжности принимаемых решений и являются
предметом активных исследований. Для их компенсации предложен ряд специ­
ализированных подходов, которые, как правило, не модифицируют ядро самого
алгоритма классификации, а реализуются в виде внешних методов.
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1.3.1 Методы оценки неопределённости

В задачах доверенного машинного обучения ключевую роль играет ана­
лиз неопределённости предсказаний модели. В современной теории машинного
обучения принято выделять два фундаментальных типа неопределённости: але­
аторную и эпистемическую.

Алеаторная неопределённость обусловлена внутренней стохастично­
стью данных и шумом измерений и отражает вариативность наблюдений при
фиксированном входе. Она является свойством самого распределения данных
и, в отличие от эпистемической неопределённости, принципиально не может
быть устранена путём увеличения объёма обучающей выборки [16].

Эпистемическая неопределённость связана с ограниченностью зна­
ний модели о структуре распределения данных и обусловлена конечностью
обучающей выборки и ограниченной выразительной способностью модели. Дан­
ный тип неопределённости, напротив, может быть уменьшен при поступлении
дополнительной информации и, как правило, возрастает в областях простран­
ства признаков, слабо представленных в обучающей выборке [17; 18].

Различение алеаторной и эпистемической неопределённости имеет принци­
пиальное значение для построения доверенных классификаторов. В частности,
высокая эпистемическая неопределённость может интерпретироваться как ин­
дикатор статистической необоснованности применения модели и выхода за
пределы области её компетенции, тогда как алеаторная неопределённость отра­
жает фундаментальную неоднозначность классификации внутри обучающего
распределения.

Существующие методы оценки неопределённости в нейросетевых моделях
развиваются в нескольких направлениях. Наиболее распространённые подходы
основаны на анализе вероятностных выходов модели и их энтропийных харак­
теристик, использовании байесовских аппроксимаций и ансамблевых моделей
для оценки вариативности предсказаний, а также на исследовании структу­
ры пространства признаков и плотности данных. Несмотря на разнообразие
предлагаемых решений, в большинстве случаев оценка неопределённости реали­
зуется как внешняя процедура по отношению к базовой модели классификации
и требует дополнительной калибровки или усложнения архитектуры [19]. Это
ограничивает их применение в задачах доверенного машинного обучения и мо­
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тивирует разработку подходов, в которых оценка неопределённости является
внутренним свойством классификатора.

1.3.2 Методы обнаружения выхода за распределение

Задача обнаружения объектов, распределение которых отличается от рас­
пределения обучающей выборки (Out-of-Distribution, OOD), формулируется
как построение решающего правила

𝑑 : 𝒳 → {in, out},

определяющего, применима ли исходная модель классификации ℎ(x) к данному
наблюдению. Целью является выявление таких объектов, для которых исполь­
зование обученного классификатора является статистически необоснованным.
Существующие методы OOD-детекции можно разделить три основных направ­
ления.

Первое направление основано на анализе выходных значений обученной
модели. Базовым представителем данной группы является метод максималь­
ной вероятности softmax (Maximum Softmax Probability, MSP) [20], в котором
объект относится к OOD, если максимальное апостериорное значение, выдава­
емое классификатором, оказывается ниже заранее заданного порога. Несмотря
на простоту реализации, данный подход уязвим к проблеме избыточной уве­
ренности нейронных сетей, проявляющейся в высоких значениях softmax даже
для нерелевантных входных данных. Более развитые методы используют ан­
самбли моделей или стохастические аппроксимации байесовского вывода для
оценки дисперсии предсказаний, интерпретируемой как мера предсказательной
неопределённости [17]. Однако такие методы, как правило, требуют многократ­
ных прямых проходов модели для одного объекта и зависят от эмпирической
калибровки.

Второе направление ориентировано на анализ внутренних представлений
данных, формируемых моделью. Основное предположение заключается в том,
что объекты, принадлежащие распределению обучения, образуют компактные
области в пространстве признаков, тогда как OOD-наблюдения располагают­
ся вне этих областей. Классическим примером является детектор на основе
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расстояния Махаланобиса [21], в котором вычисляется расстояние между
представлением нового объекта и центрами классов, оценёнными по промежу­
точным слоям нейронной сети. Данные методы, как правило, требуют хранения
статистик обучающей выборки и обладают повышенной вычислительной слож­
ностью, что ограничивает их применение в ресурсно-ограниченных сценариях.

Третье направление предполагает модификацию процедуры обучения
или архитектуры модели с целью повышения способности к детекции OOD­
объектов. К данной группе относятся методы, использующие контрастивное
обучение, а также подходы, в которых в функцию потерь добавляется дополни­
тельное слагаемое, направленное на увеличение различия между представлени­
ями объектов из обучающего распределения и объектов, рассматриваемых как
OOD [22]. Эти методы наиболее тесно интегрированы с процессом обучения
модели, однако требуют наличия синтетических или специально отобранных
OOD-данных на этапе тренировки, что во многих практических задачах явля­
ется трудно реализуемым или принципиально невозможным.

Несмотря на разнообразие существующих подходов, их объединяет общий
недостаток: аддитивный характер по отношению к базовой модели классифи­
кации. OOD-детекция реализуется в виде внешнего механизма, настраиваемого
поверх уже обученного классификатора, а её эффективность существенно зави­
сит от выбора порогов, архитектурных решений и наличия репрезентативных
данных для калибровки. Это усложняет практическое применение и не обес­
печивает надёжной работы в условиях априорно неизвестных возмущений
распределения данных.

1.3.3 Методы обработки дисбаланса классов

Проблема дисбаланса классов возникает в ситуациях, когда априор­
ное распределение классов в обучающей выборке существенно отклоняется
от равномерного, что приводит к смещению решающего правила в пользу
мажоритарных классов. Существующие методы противодействия дисбалансу
традиционно подразделяются на подходы уровня данных и уровня алгоритма
[23].
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Методы уровня данных включают недовыборку (undersampling) объектов
мажоритарного класса и перевыборку (oversampling) объектов миноритарных
классов, в том числе с использованием синтетической генерации примеров. К
последним относится, в частности, алгоритм SMOTE [24]. Достоинством этих
методов является их совместимость с произвольными алгоритмами обучения.
Вместе с тем они обладают принципиальными ограничениями: недовыборка
приводит к утрате информации о распределении мажоритарного класса, тогда
как перевыборка, особенно основанная на синтетических данных, может способ­
ствовать переобучению и искажению геометрии пространства признаков, в том
числе за счёт размытия истинных границ между классами.

Методы уровня алгоритма направлены на модификацию функции потерь
или процедуры оптимизации. Наиболее распространённым приёмом является
взвешивание классов, при котором ошибки на объектах миноритарных классов
получают больший вклад в значение функции потерь. В ансамблевых алго­
ритмах, таких как градиентный бустинг, аналогичный эффект достигается за
счёт балансировки параметров подвыборки. Преимуществом данных подходов
является сохранение исходной выборки без изменений, однако выбор весов клас­
сов представляет собой дополнительный гиперпараметр, требующий настройки.
При сильном дисбалансе это может приводить к нестабильности процесса обу­
чения и ухудшению качества обобщения на объектах мажоритарного класса.

1.3.4 Фрагментарность существующих решений

Проведённый анализ показывает, что современные методы решения за­
дач OOD-детекции и обработки дисбаланса классов носят преимущественно
фрагментарный характер. Они представляют собой совокупность разрозненных
приёмов, направленных на коррекцию последствий фундаментальных ограни­
чений стандартных моделей классификации, а не на устранение их причин.
Методы обнаружения выхода за распределение реализуются в виде внешних
инструментов, требующих отдельной настройки и калибровки, тогда как под­
ходы к борьбе с дисбалансом либо искажают исходное распределение данных,
либо вводят дополнительные гиперпараметры в процедуру обучения.
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Ключевым недостатком существующих решений является отсутствие
единого статистически обоснованного фундамента, учитывающего неопределён­
ность предсказаний. Эта неопределённость может быть обусловлена внутренней
стохастической природой данных или ограниченностью объёма обучающей
выборки и модели. Большинство подходов не предусматривает встроенного,
теоретически обоснованного механизма отказа от классификации, способного
корректно реагировать на обе формы неопределённости. Это обстоятельство
обуславливает необходимость разработки нового подхода, в котором решение
указанных проблем было бы интегрировано непосредственно в математиче­
скую модель классификатора, обеспечивая согласованность и статистическую
корректность его поведения в условиях неопределённости. Разработка такого
подхода для задач с ограниченным объёмом данных является целью настоя­
щего исследования.

1.4 Выводы

Рассмотренные в главе методы классификации демонстрируют значитель­
ное разнообразие архитектурных решений и высокий уровень развития с точки
зрения аппроксимационных возможностей и предсказательной точности. Одна­
ко в контексте парадигмы доверенного искусственного интеллекта становится
очевидным, что усложнение моделей и рост их выразительной способности сами
по себе не приводят к удовлетворению ключевых требований, предъявляемых
к надёжным системам принятия решений. Напротив, увеличение сложности
зачастую сопровождается утратой прозрачности, ослаблением статистической
интерпретации предсказаний и отсутствием формализованного контроля над
областью применимости модели.

Современные классификаторы, включая ансамблевые методы и глубо­
кие нейросетевые модели, ориентированы преимущественно на минимизацию
эмпирического риска в рамках обучающего распределения. При этом по­
ведение модели за пределами этой области, а также в условиях высокой
неопределённости, как правило, не регламентировано. В результате систе­
ма может демонстрировать высокую уверенность в заведомо некорректных
предсказаниях, что принципиально несовместимо с требованиями доверенно­
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го искусственного интеллекта. Аналогично, распространённые приёмы работы
с дисбалансом классов и выходом за распределение не формируют целостного
механизма управления неопределённостью, а выступают в роли внешних кор­
ректирующих процедур.

Таким образом, существующие подходы не обеспечивают согласованно­
го и статистически обоснованного ответа на ключевой вопрос доверенного
искусственного интеллекта: когда модели следует воздержаться от принятия
решения. Отсутствие встроенных механизмов определения границ собствен­
ной компетенции и формализованного отказа от классификации указывает на
фундаментальное несоответствие между доминирующей практикой построения
высокоточных моделей и требованиями к надёжности, предсказуемости и без­
опасности интеллектуальных систем.

Это обстоятельство подчёркивает необходимость перехода от эвристиче­
ских и аддитивных решений к методам, в которых обработка неопределённости,
асимметрии данных и выхода за носитель распределения является неотъемле­
мой частью математической модели классификатора. Такой подход позволяет
рассматривать отказ от классификации не как побочный эффект или внеш­
нюю надстройку, а как естественный элемент процедуры принятия решения,
что особенно важно для задач с ограниченным объёмом данных и повышенны­
ми требованиями к доверию и ответственности принимаемых решений.

Структура дальнейшего изложения направлена на последовательное ре­
шение обозначенных проблем. В главе 2 представлен модифицированный
байесовский классификатор, снабжённый механизмом отказа на основе оценки
неопределённости, что является теоретической основой для создания доверен­
ных систем и соотносится с первым и вторым положениями на защиту. Глава 3
развивает этот подход, предлагая метод унарной классификации, устойчивый
к дисбалансу и позволяющий работать в условиях высокой неопределённости,
что напрямую поддерживает третье защищаемое положение. Глава 4 демон­
стрирует практическое применение унарного классификатора для генерации
синтетических данных, расширяя сферу его использования. Наконец, глава 5
описывает интеллектуальную систему машинного обучения, которая реализу­
ет предложенные методы и обеспечивает их исследование и визуализацию, что
соответствует четвёртому положению на защиту.
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Глава 2. Модифицированный байесовский классификатор

2.1 Бинарная классификации и байесовский классификатор

Пусть 𝐷 = (𝑋, 𝑌 ) – случайный вектор с некоторым распределением 𝑃 ,
причём 𝑋 ∈ [0, 1]𝑑 и 𝑌 ∈ {±1}. Обозначим отвечающее 𝑃 распределение
𝑋 через 𝑃𝑋 . В дальнейшем будем называть значения 𝑋 признаками, 𝑌 –
метками классов, а 𝑑 – размерностью признакового пространства. Задача би­
нарной классификации заключается в построении дискриминантной функции
𝑓 : [0, 1]𝑑 → {±1}, которая значениям признаков ставит в соответствие мет­
ки классов.

Общую задачу классификации можно записать в следующем виде:

P(𝑌 ̸= 𝑓(𝑋))→ min
𝑓

, (2.1)

где минимум берется по всем функциям со значениями ±1. Аналогично, в этих
терминах задача регрессии принимает вид

E (𝑌 − 𝑓(𝑋))2 → min
𝑓

, (2.2)

где E – отвечающее 𝑃 математическое ожидание, а минимум берётся по всем
функциям на [0, 1]𝑑.

Решение задачи регрессии – это условное математическое ожидание

𝑔(𝑥) = E (𝑌 |𝑋 = 𝑥) = 2P(𝑌 = 1|𝑋 = 𝑥)− 1, 𝑥 ∈ [0, 1]𝑑,

как следует из соотношения

E (𝑌 − 𝑓(𝑋))2 = E (𝑌 − 𝑔(𝑋))2 + E (𝑔(𝑋)− 𝑓(𝑋))2 .

Вообще говоря, 𝑔(𝑥) определено однозначно на [0, 1]𝑑 только 𝑃𝑋-почти
наверное. В частности, вне S – носителя распределения вектора 𝑋 в [0, 1]𝑑 –
функция условного математического ожидания 𝑔(𝑥) может принимать какие
угодно значения.

Решение задачи классификации – это байесовский классификатор [25]
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𝑠(𝑥) =

⎧⎪⎪⎨⎪⎪⎩
1, eсли 𝑔(𝑥) > 0 и 𝑥 ∈ S,

любое из значений ±1, eсли 𝑔(𝑥) = 0 или 𝑥 /∈ S,
−1, eсли 𝑔(𝑥) < 0 и 𝑥 ∈ S,

(2.3)

отвечающий 𝑔 (данной версии условного математического ожидания). Послед­
нее следует из того, что для 𝑓 со значениями ±1 всегда выполнены равенства

4P(𝑌 ̸= 𝑓(𝑋)) = E (𝑌 − 𝑓(𝑋))2 = E (𝑌 − 𝑔(𝑋))2 + E (𝑔(𝑋)− 𝑓(𝑋))2

Согласно (2.3), зоной неопределённости байесовского классификатора, от­
вечающего 𝑔, является множество [0,1]𝑑 ∖ S ∪ {𝑥 : 𝑔(𝑥) = 0}.

На практике распределение 𝑃 неизвестно, но при этом, как правило,
имеется выборка из 𝑃 , так что для оценки байесовского классификатора исполь­
зуются эмпирические аналоги (2.1) и (2.2) с регуляризацией [26] и различными
ограничениями на классы функций 𝑓 , по которым ведётся оптимизация.

2.2 Проблематика

Ключевая трудность, с которой сталкиваются методы машинного обуче­
ния [27], заключается в том, что как этап обучения, так и последующие выводы
обоснованы лишь в пределах носителя распределения имеющихся данных. Как
было отмечено ранее, область вне носителя S распределения случайного вектора
𝑋 представляет собой зону неопределённости для байесовского классификато­
ра. Однако распространённые алгоритмы машинного обучения, как правило, не
осуществляют явную оценку границ множества S, формируя при этом конкрет­
ные правила классификации на всём компакте [0, 1]𝑑, включая точки, лежащие
вне S. При наличии сдвигов или искажений в распределении данных (как в
обучающей, так и тестовой выборках) такие выводы за пределами S могут
оказаться некорректными. В этих случаях естественным решением является от­
каз от классификации, однако большинство современных методов не обладают
встроенными механизмами для автоматического отказа от принятия решения,
что снижает их надёжность в прикладных задачах.

Рассмотрим подробнее ситуации, в которых отказ от принятия решения
является обоснованным.
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1. Выброс. Если наблюдение существенно отличается от всех прочих, то
модель не располагает достаточной информацией для корректной клас­
сификации. Обычно для обнаружения таких объектов применяются
специальные процедуры предварительной обработки, ориентированные
на выявление выбросов [28]. Однако эти методы, как правило, требуют
задания гиперпараметров [29] и применяются перед обучением модели,
что не позволяет гибко учитывать особенности распределения обучаю­
щих и тестовых данных.

2. Выход за распределение (OOD, out-of-distribution). При из­
менении распределения входных данных модель может оказаться
неспособной дать обоснованное решение [30]. Существующие подходы к
детекции подобных случаев делятся на три класса: статистические ме­
тоды [31], моделирование сдвигов [32] и применение вспомогательных
моделей машинного обучения [33]. Статистические методы отличаются
высокой чувствительностью к выбору конкретного подхода и пара­
метров. Моделирование сдвигов требует априорных предположений о
характере изменений распределения и его динамике во времени, что за­
трудняет автоматизацию. Методы на основе машинного обучения сами
подвержены проблеме выхода за распределение, но уже применительно
к детектору.

3. Зона пересечения классов. Если носители распределений несколь­
ких классов пересекаются, то для новых наблюдений, попавших в
такую область, вероятности принадлежности к разным классам могут
быть примерно равны. В этом случае разумно отказаться от авто­
матической классификации и передать наблюдение на рассмотрение
эксперту, обладающему дополнительной информацией.

Таким образом, отказ от классификации представляется оправданным в
зоне неопределённости, а именно для наблюдений, принадлежащих множеству
[0, 1]𝑑 ∖ S ∪ {𝑥 : 𝑔(𝑥) = 0}. Главная трудность заключается в том, что мно­
жество S априорно неизвестно. В следующем разделе рассматривается подход,
позволяющий обойтись без явной оценки носителя S.
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2.3 Модификация байесовского классификатора

Одним из возможных подходов к преодолению указанной проблемы яв­
ляется модификация байесовского классификатора путём экстраполяции его
поведения за пределы носителя S. Такая экстраполяция достигается за счёт
добавления к обучающей выборке искусственных наблюдений, компоненты ко­
торых равномерно распределены на всём компакте [0, 1]𝑑, а метки классов
фиксированы и равны нулю [3].

В результате этой модификации исходное распределение случайного век­
тора (𝑋, 𝑌 ), принимающего значения в пространстве [0, 1]𝑑×{±1}, заменяется
на новое распределение на [0, 1]𝑑 × {−1, 0,+1}, представляющее собой смесь
двух распределений:

𝑃α = (1− α)𝑃 + α𝑃 ,

где α ∈ (0, 1), 𝑃 – исходное распределение обучающих данных, 𝑃 – распределе­
ние, при котором вектор признаков равномерно распределён на [0, 1]𝑑, а метка
класса тождественно равна нулю.

Соответствующее маргинальное распределение признаков 𝑋 при этом при­
нимает следующий вид:

λα = (1− α)𝑃𝑋 + αλ,

где λ – мера Лебега на [0, 1]𝑑, а 𝑃𝑋 – распределение признаков 𝑋, когда вектор
(𝑋, 𝑌 ) распределён согласно 𝑃 . Обозначим через Eα математическое ожидание
относительно распределения 𝑃α, а через S – носитель распределения 𝑃𝑋 .

В силу разложения Лебега и теоремы Радона–Никодима всегда найдутся
неотрицательная интегрируемая функция ρ на [0, 1]𝑑 и борелевское множество
𝐴 ⊆ S нулевой лебеговой меры такие, что

𝑃𝑋(𝐵) =

∫︁
𝐵

ρ(𝑥)𝑑𝑥+ 𝑃𝑋(𝐴 ∩𝐵)

для всех борелевских множеств 𝐵 в [0, 1]𝑑.

Теорема 1. Для всякого α ∈ (0, 1) решение 𝑔α задачи регрессии
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Eα (𝑌 − 𝑓(𝑋))2 → min
𝑓

(2.4)

существует, это решение единственно 𝑃𝑋- и λ-п. н. и может быть задано
формулой

𝑔α(𝑥) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑔(𝑥), если 𝑥 ∈ 𝐴,

(1− α)𝑔(𝑥)ρ(𝑥)
α+ (1− α)ρ(𝑥)

, если ρ(𝑥) > 0 и 𝑥 ∈ S ∖ 𝐴,

0, если или ρ(𝑥) = 0 и 𝑥 ∈ S ∖ 𝐴, или 𝑥 /∈ S,

(2.5)

здесь минимум берется по всем (борелевским) функциям 𝑓 и

𝑔(𝑥) = E (𝑌 |𝑋 = 𝑥) на [0, 1]𝑑.

При этом классификатор 𝑠α = 𝑠α(𝑥), 𝑥 ∈ [0, 1]𝑑, заданный формулой (2.3) c за­
меной 𝑔 на любое решение 𝑔α задачи (2.4) и S на [0, 1]𝑑, обладает следующими
свойствами:

– (i). 𝑠α реализует минимум в задаче классификации

P(𝑌 ̸= 𝑓(𝑋))→ min
𝑓

,

где минимум берется по всем (борелевским) функциям со значениями
±1;

– (ii). зоной неопределённости 𝑠α является множество {𝑥 ∈ [0, 1]𝑑 :

𝑔α(𝑥) = 0}, которое покрывает λ-п.н. множество [0, 1]𝑑 ∖ S, где S –
носитель распределения 𝑃𝑋 .

Доказательство теорем. 1 приведено в приложении Б.1.
Пусть вместо (2.4) рассматривается задача вида

Eα (𝑌 − 𝑓(𝑋))2 + 𝑃𝑒𝑛(𝑓)→ min
𝑓∈ℱ

, (2.6)

где ℱ – некоторое параметрическое семейство функций (к примеру, нейросетей
заданной архитектуры), а 𝑃𝑒𝑛(𝑓) – регуляризационное слагаемое-штраф.

Тогда, как следует из доказательства теорем. 1, в терминах минимизирую­
щих функций задача (2.6) будет эквивалентна задаче приближения 𝑔α – любого
решения задачи (2.4) – функцией из класса ℱ с учётом штрафа 𝑃𝑒𝑛(𝑓):
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(1− α)‖𝑔α − 𝑓‖2𝑃𝑋
+ α‖𝑔α − 𝑓‖2λ + 𝑃𝑒𝑛(𝑓)→ min

𝑓∈ℱ
, (2.7)

где ‖ · ‖µ – это 𝐿2-норма относительно меры 𝑃𝑋 или λ.
Как было отмечено ранее (см. раздел 2.1), в практических задачах рас­

пределение 𝑃 априорно неизвестно, а классификационное правило строится
по конечной выборке, представляющей реализацию этого распределения. В
таких условиях задача классификации заменяется на эмпирический аналог за­
дачи (2.6), решаемый с использованием методов машинного обучения.

Поскольку в эмпирической постановке оценка функции принятия решения
подвержена статистическим флуктуациям, область отказа от классификации
следует расширить, чтобы учесть возможную неопределённость вблизи грани­
цы между классами. Для этого вводится дополнительный гиперпараметр β > 0,
регулирующий ширину зоны неопределённости [34; 35]. Отказ от принятия ре­
шения осуществляется для тех наблюдений, по которым оценка эмпирической
функции 𝑓 , соответствующей приближённому решению задачи (2.6), по моду­
лю не превосходит β: |𝑓(𝑥)| ⩽ β.

Такое уточнение позволяет повысить надёжность классификатора за счёт
уменьшения числа потенциально ошибочных решений в областях, где уверен­
ность модели недостаточна.

Параметр β имеет ясную интерпретацию: он определяет минимальный
уровень уверенности классификатора, при котором принимается решение. В
предельном случае β = 0 отказ от классификации осуществляется только тогда,
когда значение 𝑓(𝑥) точно равно нулю, что соответствует ситуации, в которой
размер обучающей выборки стремится к бесконечности, то есть распределение
𝑃 считается полностью известным.

2.4 Аппроксимация байесовского классификатора

Для построения классификатора, приближающего оптимальное байе­
совское правило, предполагается наличие размеченного обучающего набора
(𝑋, 𝑌 ) = {(𝑋1, 𝑌1), . . . , (𝑋𝑛, 𝑌𝑛)}, состоящего из 𝑛 независимых наблюдений.
Каждое наблюдение включает вектор признаков 𝑋𝑖 ∈ [0,1]𝑑 и бинарную мет­
ку класса 𝑌𝑖 ∈ {−1,+1}. Предполагается, что признаки заданы в евклидовом
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пространстве фиксированной размерности 𝑑, что позволяет применять как
метрические, так и нейросетевые методы приближения. В данном разделе
рассматриваются различные подходы к аппроксимации байесовского класси­
фикатора, включая классические методы и нейросетевые модели, обладающие
способностью к адаптации и масштабной инвариантности.

2.4.1 Аппроксимация классическими методами

Одним из подходов к приближению байесовского классификатора яв­
ляется использование классических непараметрических и параметрических
методов [36; 37]. Эти методы позволяют получить приближение к оптималь­
ной функции принятия решения и часто служат базой для анализа свойств
более сложных моделей.

Наиболее простым из них выступает построение гистограммы [38]. Про­
странство признаков [0, 1]𝑑 разбивается на конечное число ячеек (например,
гиперкубов одинакового объёма), в каждой из которых оценивается услов­
ное распределение метки класса 𝑌 по наблюдаемым примерам. Полученная
функция классификации будет иметь вид ступенчатой функции, принимающей
значение класса с наибольшей эмпирической вероятностью в каждой ячей­
ке. Однако точность метода существенно зависит от выбора размера ячейки
и неустойчива к локальным вариациям плотности данных. Кроме того, для
вычисления эмпирических вероятностей требуется хранение всей обучающей
выборки, а число необходимых ячеек экспоненциально возрастает с размерно­
стью пространства признаков, что делает метод крайне неэффективным уже
при умеренных значениях 𝑑.

Более гибким методом является алгоритм 𝑘 ближайших соседей (kNN).
Для классификации новой точки 𝑥 ∈ [0, 1]𝑑 выбираются 𝑘 ближайших к ней
объектов из обучающего множества, а прогноз определяется как знак суммы
их меток:

𝑐𝑛(𝑥) = sign

⎛⎝ ∑︁
𝑖∈𝒩𝑘(𝑥)

𝑌𝑖

⎞⎠ ,
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где 𝒩𝑘(𝑥) – множество индексов 𝑘 ближайших к 𝑥 точек в обучающей выборке.
Метод обладает асимптотической состоятельностью [39] при 𝑘 → ∞ и 𝑘/𝑛 →
0, но на практике чувствителен к выбору метрики и параметра 𝑘. В случае
сложных или структурированных признаков, определение подходящей метрики
может быть затруднено или неочевидно.

Одним из распространённых непараметрических подходов также явля­
ется ядерная оценка условного распределения. Предполагается, что функция
плотности распределения оценивается с помощью сглаживающего ядра 𝐾, а
классификационное решение принимается на основе усреднённой метки с веса­
ми, зависящими от расстояния между точкой 𝑥 и наблюдениями:

η̂(𝑥) =

∑︀𝑛
𝑖=1𝐾ℎ(𝑥−𝑋𝑖)𝑌𝑖∑︀𝑛
𝑖=1𝐾ℎ(𝑥−𝑋𝑖)

, 𝑐𝑛(𝑥) = sign(η̂(𝑥)),

где 𝐾ℎ(𝑢) = 1
ℎ𝑑𝐾(𝑢/ℎ) – ядро с шириной сглаживания ℎ. Выбор ядра и па­

раметра ℎ существенно влияет на результат классификации. Метод обладает
хорошими аппроксимирующими свойствами, но страдает от “проклятия раз­
мерности“ и требует осторожной настройки [40; 41].

Переходя к параметрическим методам, важное место занимает метод
опорных векторов (Support Vector Machines, SVM), который аппроксимирует
байесовский классификатор через построение оптимальной разделяющей гипер­
плоскости в признаковом пространстве или его нелинейном отображении [10].
В линейном случае SVM решает задачу максимизации зазора между классами:

min
𝑤,𝑏

1

2
‖𝑤‖2 при 𝑌𝑖(𝑤

⊤𝑋𝑖 + 𝑏) ⩾ 1, 𝑖 = 1, . . . , 𝑛.

Для нелинейных границ применяется замена скалярного произведения на яд­
ро 𝐾(𝑥, 𝑥′), что позволяет эффективно аппроксимировать сложные границы
раздела. SVM показывает хорошие результаты на малых выборках, устойчив к
выбросам при введении мягкого зазора и имеет теоретические гарантии обоб­
щающей способности [42].

Таким образом, классические методы аппроксимации байесовского клас­
сификатора варьируются от простых гистограмм до методов, основанных на
решении задач оптимизации в пространстве функций. Их использование обос­
новано в задачах с ограниченным объёмом данных и понятной метрикой, но в
случае высокоразмерных или структурированных данных может потребовать­
ся более гибкая модель.
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2.4.2 Аппроксимация равномерно непрерывной функцией

Пусть 𝑐(𝑋) : [0, 1]𝑑 → R – равномерно непрерывная функция на [0, 1]𝑑, с
помощью которой будем приближать байесовский классификатор. Рассмотрим
задачу среднеквадратичной аппроксимации:

E (𝑐(𝑋)− 𝑌 )2 → min
𝑐(𝑋)

. (2.8)

Поскольку

E (𝑐(𝑋)− 𝑌 )2 = E (𝑐(𝑋)− 𝑔(𝑋) + 𝑔(𝑋)− 𝑌 )2 →

E (𝑐(𝑋)− 𝑌 )2 = E (𝑐(𝑋)− 𝑔(𝑋))2 + E (𝑔(𝑋)− 𝑌 )2

и второе слагаемое не зависит от 𝑐(𝑋), задача (2.8) сводится к аппроксимации
функции регрессии:

E (𝑐(𝑋)− 𝑔(𝑋))2 → min
𝑐(𝑋)

, (2.9)

2.4.3 Нейросетевая аппроксимация

Возьмём в качестве 𝑐(𝑋) многослойный персептрон [43] (полносвязную
нейронную сеть) с 𝑑-мерным входным слоем, состоящий из 𝐿 скрытых слоёв
по 𝑘 нейронов с кусочно-линейной функцией активации σ(𝑥), например, ReLU,
LeakyReLU, Abs (рисунок 2.1) в каждом и выходным слоем из одного нейро­
на. Согласно теореме об универсальной аппроксимации для нейронных сетей
с неполиномиальной функцией активации [44] для любого заданного ε > 0

существуют такие значения параметров персептрона 𝐿 и 𝑘, что для любого
𝑥 ∈ [0, 1]𝑑 выполняется условие:

sup
𝑥∈[0,1]𝑑

|𝑐(𝑥)− 𝑔(𝑥)| < ε.

То есть теоретически ε-приближенное решение задачи (2.9) существует.
Пусть выборка (𝑋, 𝑌 ) имеет на S равномерно непрерывную плотность

𝑓(𝑋):
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а) ReLU(w) = 𝑚𝑎𝑥(0, 𝑤) б) LeakyReLU(w) =
𝑚𝑎𝑥(0.01𝑤,𝑤)

в) Abs(w) = |𝑤|

Рисунок 2.1 — Кусочно-линейные функции активации

𝑓(𝑋) = 𝑝−1𝑓−1(𝑋) + 𝑝+1𝑓+1(𝑋),

где 𝑓−1 и 𝑓+1 – плотности классов −1 и +1 соответственно.
Для формирования выборки из смеси реальных данных и “фона“ с

плотностью α𝑓(𝑋) + (1 − α)𝑝(𝑋) добавим к этой выборке искусственно сгене­
рированные данные {(𝑋𝑛+1, 𝑌𝑛+1), . . . , (𝑋2𝑛, 𝑌2𝑛)}, где векторы {𝑋𝑛+1, . . . , 𝑋2𝑛}
– наблюдения независимо равномерно распределённых на [0, 1]𝑑 случайных век­
торов c плотностью 𝑝(𝑋), а 𝑌𝑛+𝑖 = 0, 𝑖 = 1..𝑛.

Пусть 𝐶(𝐿, 𝑘) – множество всех многослойных персептронов 𝑐(𝑋) с одним
нейроном с линейной функцией активации в выходном слое, кусочно-линейной
функцией активации | · | (модульная) в скрытых слоях и числом 𝐿 и разме­
ром 𝑘 скрытых слоёв.

Применяя некоторый алгоритм оптимизации (градиентный спуск [45],
генетический алгоритм [46] и т.д.), построим выборочную оценку решения за­
дачи (2.9):

2𝑛∑︁
𝑖=1

(𝑐𝑛(𝑋𝑖)− 𝑌𝑖)
2 → min

𝑐𝑛(𝑋)∈𝐶(𝐿,𝑘)
, (2.10)

где параметры 𝐿 и 𝑘 выбраны оптимально с учётом ограничений, связанных
с переобучением.

Пусть функция 𝑐*𝑛(𝑋) – решение оптимизационной задачи (2.10), кото­
рая в дальнейшем будет называться функцией нейросетевой регрессии.
Соответствующий этому решению персептрон строит иерархическое (по слоям)
разбиение компакта [0, 1]𝑑 на 𝑂(𝑘𝑑𝐿) непересекающихся ячеек [9] (при 𝑘 > 𝑑).

Пример такого разбиения показан на рисунке 2.2, где персептрон имеет
𝐿 = 2 скрытых слоя по 𝑘 = 6 нейронов.
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а) Ячейки первого
слоя: 18

б) Ячейки второго
слоя: 121

в) Ячейки выходного
слоя: 148

Рисунок 2.2 — Пример разбиения некоторым персептроном с 𝐿 = 2, 𝑘 = 6

2.4.4 Адаптивная гистограммная аппроксимация

Пусть в результате построения 𝑐*𝑛(𝑋) получено разбиение компакта [0, 1]𝑑

на 𝑁 непересекающихся ячеек {𝐾1, 𝐾2, . . . , 𝐾𝑁}. Рассмотрим кусочно-посто­
янную (в общем случае разрывную) функцию гистограммной регрессии
ℎ𝑛(𝑋), принимающую постоянные значения в ячейках разбиения [0, 1]𝑑 и ре­
шим для неё оптимизационную задачу:

2𝑛∑︁
𝑖=1

(ℎ𝑛(𝑋𝑖)− 𝑌𝑖)
2 → min

ℎ𝑛(𝑋)
, (2.11)

Пусть 𝑋 ∈ 𝐾𝑟. Тогда задачу (2.11) для этой ячейки можно представить
в следующем виде:

𝑛−1(𝑋)·(ℎ𝑛(𝑋)+1)2+𝑛0(𝑋)·(ℎ𝑛(𝑋)−0)2+𝑛+1(𝑋)·(ℎ𝑛(𝑋)−1)2 → min
ℎ𝑛(𝑋)

, (2.12)

где 𝑛𝑗 =
2𝑛∑︀
𝑖=1

𝐼𝑋𝑖∈𝐾𝑟,𝑌𝑖=𝑗.

После дифференцирования функции (2.12) по ℎ𝑛(𝑋) получаем решение
задачи (2.11):

ℎ*𝑛(𝑋) =
𝑛+1(𝑋)− 𝑛−1(𝑋)

𝑛−1(𝑋) + 𝑛0(𝑋) + 𝑛+1(𝑋)
. (2.13)

Пример вычисления функции гистограммной регрессии показан на рисун­
ке 2.3.
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Рисунок 2.3 — Пример вычисления ℎ*𝑛(𝑋) в некоторой ячейке 𝐾𝑟

Основными достоинствами использования такой аппроксимации являются
независимость от масштаба и отсутствие необходимости введения метрик, как
того требуют методы на основе расстояний вроде 𝑘 ближайших соседей.

2.5 Объясняющее двоичное дерево eXBTree

2.5.1 Построение объясняющего дерева решений

Как было сказано в разделе 2.4.3, многослойный персептрон с кусочно­
линейной функцией активации разбивает входное пространство признаков на
𝑁 непересекающихся ячеек {𝐾1, 𝐾2, . . . , 𝐾𝑁}. В каждой такой ячейке значе­
ние выходного нейрона определяется фиксированной линейной комбинацией
признаков.

Рассмотрим полносвязный персептрон с 𝐿 скрытыми слоями по 𝑘 нейро­
нов в каждом и одним выходным нейроном. В качестве функции активации
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скрытых слоёв используется модульная функция:

σ(𝑧) = |𝑧|.

Обозначим выходы нейронов первого скрытого слоя через 𝐴𝑖, второго –
через 𝐵𝑖, третьего – через 𝐶𝑖, и так далее (рисунок 2.4). Для произвольного
нейрона слоя 𝐴 выполняется:

𝐴𝑖 =
𝑑∑︁

𝑗=1

𝑎𝑖𝑗𝑥𝑗 + 𝑎𝑖0,

где 𝑥 ∈ [0, 1]𝑑 – входной вектор признаков. Аналогично, для следующего слоя:

𝐵𝑖 =
𝑘∑︁

𝑗=1

𝑏𝑖𝑗|𝐴𝑗|+ 𝑏𝑖0,

и так далее до выходного слоя:

𝑐𝑛(𝑥) =
𝑘∑︁

𝑗=1

𝑐𝑗|𝐵𝑗|+ 𝑐0.

Каждый нейрон разбивает своё входное пространство на две области: од­
ну, в которой входная сумма положительна (в этом случае модуль раскрывается
со знаком «плюс»), и другую, где сумма отрицательна (в этом случае модуль
раскрывается со знаком «минус»). Равенство нулю считается переходом со зна­
ком «плюс». Таким образом, на каждом шаге можно заменить выражение с
функцией активации линейным выражением с соответствующим знаком.

Раскрывая функцию активации в нейронах первого слоя, можно сформи­
ровать дерево, в котором каждый путь соответствует определённой комбинации
знаков раскрытия модулей. В узлах дерева находятся неравенства, задаваемые
условиями перехода: при переходе по левой ветви знак раскрытия модуля в те­
кущем нейроне отрицателен, по правой – положителен. После обработки всех
нейронов слоя 𝐴 все функции активации будут раскрыты, и входы к следу­
ющему слою 𝐵 становятся кусочно-линейными выражениями, зависящими от
исходных переменных 𝑥𝑗, и процесс повторяется.

Таким образом, можно построить объясняющее двоичное дерево реше­
ний [47], в дальнейшем называемое eXBTree (eXplanatory Binary Tree), в
котором каждая вершина соответствует разбиению пространства по линейному
неравенству одного нейрона, а каждая листовая вершина – конечной линейной
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Рисунок 2.4 — Архитектура многослойного персептрона с 𝑑 = 2, 𝐿 = 3, 𝑘 = 7

функции выходного слоя, полученной на конкретной ячейке пространства. По­
следовательность знаков, с которыми раскрывались активационные функции
нейронов по пути от входа к выходному нейрону кодирует произвольную ветку
в построенном дереве (рисунок 2.5).

Наличие такой структуры позволяет не только интерпретировать клас­
сификацию конкретного наблюдения (путь через дерево), но и формировать
иерархию разбиений пространства, объединяя соседние ветви дерева на разных
уровнях. Это открывает возможности для оценки доверия и анализа преце­
дентов – как в пределах отдельной ячейки, так и на объединённых областях
пространства.
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Рисунок 2.5 — Пример eXBTree на основе персептрона с 𝑑 = 2, 𝐿 = 1, 𝑘 = 3

2.5.2 Комбинаторная сложность и практическая реализация
eXBTree

Теорема 2 (О верхней оценке сложности построения полного объясняющего де­
рева для многослойного персептрона). Рассмотрим многослойный персептрон
с 𝑑-мерным входом, 𝐿 скрытыми слоями, каждый из которых содержит 𝑘

нейронов (𝑘 > 𝑑), и одним выходным нейроном. Пусть все скрытые нейроны
используют кусочно-линейную функцию активации | · |: σ(𝑥) = |𝑥|. Тогда вре­
менная сложность алгоритма построения полного объясняющего двоичного
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дерева (eXBTree), которое точно представляет функцию, вычисляемую пер­
септроном, в худшем случае составляет 𝒪(𝑘𝑑𝐿).

Доказательство. Каждый узел eXBTree соответствует проверке знака ли­
нейного выражения 𝑧

(𝑙)
𝑖 (𝑥) перед применением активационной функции (𝑙,𝑖).

Полный путь от корня к листу задаёт систему линейных неравенств, множе­
ство решений которой (если оно непусто) является одним из линейных регионов
(ячеек 𝐾𝑗), на которые сеть разбивает входное пространство R𝑑. На каждом та­
ком регионе выход сети линеен. Таким образом, листья eXBTree находятся во
взаимно однозначном соответствии с линейными регионами сети.

Для сети с 𝐿 слоями по 𝑘 нейронов с кусочно-линейной активацией мак­
симальное число линейных регионов известно [48] и оценивается как 𝒪(𝑘𝑑𝐿).
На построение каждого листа (региона) алгоритм тратит полиномиальное от­
носительно 𝑘, 𝐿 и 𝑑 время на проверку совместности неравенств и вычисление
итоговой линейной функции. Следовательно, общая сложность есть 𝒪(𝑘𝑑𝐿).

Теорема доказана.

Теорема 3 (О временной сложности получения прогноза по дереву eXBTree).
Пусть 𝑇 – полное объясняющее дерево (eXBTree), построенное для мно­
гослойного персептрона с 𝐿 скрытыми слоями по 𝑘 нейронов и входной
размерностью 𝑑. Тогда временная сложность получения прогноза для ново­
го наблюдения 𝑥 ∈ R𝑑 по дереву 𝑇 составляет 𝒪(𝑑 · (𝑘𝐿+ 1)).

Доказательство. Прогноз по дереву 𝑇 осуществляется обходом от корня до ли­
ста. В каждом внутреннем узле дерева проверяется знак линейной комбинации
вида:

𝑤1𝑥1 + 𝑤2𝑥2 + · · ·+ 𝑤𝑑𝑥𝑑 + 𝑏,

где 𝑤 ∈ R𝑑, 𝑏 ∈ R – параметры, соответствующие одному из нейронов исходной
сети. Вычисление значения этой комбинации для входного вектора 𝑥 требует
вычисления скалярного произведения 𝑤⊤𝑥 и добавления свободного члена 𝑏,
что выполняется за 𝒪(𝑑) операций.

Глубина полного дерева 𝑇 в точности равна общему числу скрытых ней­
ронов в сети, то есть 𝑘𝐿. При переходе от корня к листу алгоритм выполняет
проверку в каждом из 𝑘𝐿 внутренних узлов на пути. Следовательно, общее
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время вычисления прогноза оценивается как:

𝑘𝐿⏟ ⏞ 
число узлов

× 𝒪(𝑑)⏟  ⏞  
сложность проверки в узле

= 𝒪(𝑑 · 𝑘𝐿).

В листовой вершине хранится линейная функция 𝑐⊤𝑥 + 𝑐0, вычисление
которой также требует 𝒪(𝑑) операций. Эта добавка не меняет асимптотическую
оценку 𝒪(𝑑 · 𝑘𝐿).

Теорема доказана.

Тем не менее, в рамках задач классификации или аппроксимации интерес
представляют не все возможные ячейки, а лишь те, в которые попали обучаю­
щие (или тестовые) наблюдения. Таким образом, нет необходимости в полном
построении дерева. Достаточно определить множество фактически реализован­
ных путей, то есть таких комбинаций знаков при раскрытии модулей, которые
соответствуют реально встречающимся входным точкам.

Это приводит к следующему практическому алгоритму: каждое наблюде­
ние при прямом проходе через сеть порождает набор знаков уравнений нейронов
(до применения активационной функции), который можно трактовать как ад­
рес ячейки. Хранить необходимо лишь такие уникальные адреса, тем самым
получая компактное и эффективное представление разбиения пространства,
ограниченное данными. Если при последующем анализе наблюдение попадает
в новую ячейку, то такое наблюдение считается недоверенным и требует до­
полнительного анализа (с возможным последующим дообучением персептрона
на нём). Для хранения такого дерева требуется только оригинальный персеп­
трон и словарь, в котором ключами выступают последовательности знаков
выходов нейронов, а значениями счётчики точек каждого класса. А времен­
ная сложность получения прогноза по дереву совпадает с получением прогноза
персептрона (для получения адреса ячейки).

2.5.3 Геометрический анализ построенного дерева

Рассмотрим свойства дерева, построенного на основе модифицирован­
ного обучающего множества с фоновыми наблюдениями, описанного ранее.
В каждом внутреннем узле такого дерева содержится линейное неравенство,
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возникающее из перехода через гиперплоскость активации некоторого нейро­
на персептрона 𝑐*𝑛(𝑋). Каждая вершина дерева соответствует определённой
комбинации знаков выражений вида 𝑎⊤𝑖 𝑥 + 𝑎0 и, следовательно, описывает
подмножество признакового пространства – выпуклый многогранник, ограни­
ченный системой линейных неравенств.

В каждом листе дерева подсчитывается число объектов обучающего мно­
жества, попавших в соответствующую ячейку, с разбиением по классам: 𝑛−1, 𝑛0

и 𝑛+1. Таким образом, каждый лист фактически содержит гистограмму клас­
сов, обсуждавшуюся в разделе 2.4.4. Эти гистограммы позволяют оценивать
апостериорные вероятности классов в пределах каждой ячейки и выявлять об­
ласти с высокой или низкой степенью уверенности модели.

При этом следует учитывать статистическую надёжность оценок, получае­
мых в отдельных ячейках. Для повышения устойчивости апостериорных оценок
целесообразно в первую очередь анализировать ячейки, содержащие не менее
некоторого минимального числа наблюдений. В частности, практическим эмпи­
рическим правилом математической статистики является требование наличия
не менее пяти наблюдений в выборке для получения осмысленных частотных
оценок [49]. Ячейки, в которых число объектов обучающего множества мень­
ше данного порога, следует рассматривать как статистически ненадёжные, а
ячейки, содержащие единичные наблюдения, – как недоверенные. Такое ограни­
чение позволяет снизить влияние случайных флуктуаций выборки и повысить
достоверность интерпретации структуры дерева в терминах вероятностных ха­
рактеристик классов.

Полученное дерево может быть также рассмотрено как дерево решений
с линейными функциями разделения в узлах [50], в отличие от традиционных
деревьев, в которых узлы соответствуют пороговым условиям вида 𝑥𝑗 < 𝑐.
Такое представление делает поведение многослойного персептрона интерпре­
тируемым: каждый путь от корня до листа соответствует системе линейных
неравенств, описывающих область пространства, где модель принимает опреде­
лённое решение линейным образом.

Важно подчеркнуть, что данная структура обеспечивает интерпретируе­
мость модели в геометрических терминах, что традиционно считается слабой
стороной нейронных сетей [51]. В частности, можно явно указать, при каких
линейных соотношениях между признаками модель принимает то или иное
решение, и каков уровень уверенности классификатора в пределах каждой
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ячейки. Это позволяет использовать построенное дерево не только как ап­
проксиматор функции принятия решений, но и как инструмент визуального
и количественного анализа поведения модели в различных областях призна­
кового пространства.

2.5.4 Анализ прецедентов и локальной уверенности

Для повышения доверия пользователя к решению модели важным явля­
ется анализ конкретных прецедентов – обучающих объектов, попавших в ту
же ячейку дерева, что и тестируемое наблюдение. Вместо представления лишь
числового выхода модели (например, вероятности класса 0.98), полезно пока­
зать близкие по признаковому пространству точки из обучающей выборки, что
даёт наглядное представление о локальном окружении и структуре данных.
Таким образом, построенное дерево служит своеобразной псевдо-метрикой,
определяющей локальную близость объектов на основе разбиения простран­
ства признаков.

Каждый лист дерева соответствует области признакового пространства,
ограниченной системой линейных неравенств. В пределах этой области под­
считывается статистика по объектам различных классов. Однако в реальных
задачах, особенно в медицинских и других высокорисковых прикладных обла­
стях, объёмы доступных данных могут быть недостаточными для надёжной
статистической оценки на уровне отдельных ячеек.

В таких случаях целесообразно рассматривать информацию о соседних
ячейках того же уровня дерева. Соседями называются ячейки, отличающиеся
значением только одного из предикатов на пути от корня. Если в рассматри­
ваемой ячейке содержится недостаточное количество наблюдений (например,
менее заданного порога 𝑛min), то можно агрегировать информацию с её соседя­
ми для получения более устойчивой оценки локального распределения классов.

Альтернативным подходом является подъём на уровень выше по дереву,
то есть укрупнение ячейки за счёт устранения одного из условий, ограничи­
вающих пространство. Это приводит к рассмотрению более широкой области
признакового пространства, в которой ожидается большее количество обучаю­
щих объектов. Полученная таким образом укрупнённая ячейка также может
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быть проанализирована с точки зрения гистограммы классов, как описано
выше, обеспечивая оценку апостериорной вероятности при недостаточной ло­
кальной уверенности.

Подобная стратегия, основанная на анализе прецедентов, позволяет реали­
зовать согласованную схему оценки доверия к решению модели: в случае низкой
уверенности по статистике на текущем уровне происходит адаптивное укрупне­
ние области анализа. Это даёт практический механизм для отказа от принятия
решения в условиях недостаточной информации и одновременно повышает на­
дёжность выводов, что особенно важно в высокорисковых прикладных задачах.

2.6 Связь нейросетевой и гистограммной аппроксимаций.
Асимптотические свойства гистограммной аппроксимации

Гистограммная аппроксимация, как было показано выше, представляет
собой естественный способ приближённой оценки апостериорной вероятности
класса по обучающим данным. В каждой ячейке пространства признаков, опре­
делённой системой линейных неравенств, оценивается эмпирическое распреде­
ление классов на основе количества объектов, попавших в соответствующую
область. В частности, выход функции гистограммной аппроксимации можно
записать как

ℎ*𝑛(𝑋) =
𝑛+1(𝑋)− 𝑛−1(𝑋)

𝑛−1(𝑋) + 𝑛0(𝑋) + 𝑛+1(𝑋)
,

где 𝑛−1(𝑋) и 𝑛+1(𝑥) – количество объектов классов −1 и +1 соответственно, а
𝑛0 – количество фоновых точек в ячейке, содержащей наблюдение 𝑋.

Таким образом, ℎ*𝑛(𝑋) служит приближением разности апостериорных ве­
роятностей.

Предполагая, что плотности распределения классов равномерно непрерыв­
ны, можно показать, что гистограмма является строго состоятельной оценкой
этих плотностей. Результаты работы [9] и авторской работы [4] позволяют утвер­
ждать, что при росте объёма обучающей выборки 𝑛 → ∞ и одновременном
увеличении числа формируемых ячеек имеет место следующее соотношение:

E (ℎ*𝑛(𝑋)− 𝑐*𝑛(𝑋))2 → 0, (2.14)



44

где 𝑐*𝑛(𝑋) – функция нейросетевой регрессии.
Этот результат обосновывает возможность замены гистограммной ап­

проксимации на нейросетевую, сохраняющую асимптотические свойства при
существенно меньших требованиях к вычислительным ресурсам. В отличие от
гистограммы, для работы персептрона не требуется хранение всей обучающей
выборки или экспоненциально большого числа ячеек.

Следствием приведённого утверждения является практический критерий
принятия решения на основе выхода персептрона. Поскольку 𝑐*𝑛(𝑥) приближа­
ет ℎ*𝑛(𝑥), то в условиях асимптотической сходимости разумно вводить порог
отказа β и принимать решение о принадлежности к одному из классов толь­
ко при условии

|𝑐*𝑛(𝑥)| > β.

Тем самым достигается контроль над уверенностью классификатора: чем
ближе значение 𝑐*𝑛(𝑥) к нулю, тем ниже надёжность предсказания. Пред­
ложенная схема позволяет реализовать отказ от ответа в ситуациях, когда
классификатор не обладает достаточной апостериорной уверенностью, и од­
новременно существенно снижает вычислительную сложность по сравнению с
прямой реализацией гистограммной аппроксимации.

2.7 Случай нескольких классов

Рассмотренные ранее методы касаются задачи бинарной классификации,
когда множество допустимых меток ограничено двумя классами. Однако на
практике часто возникает необходимость классификации объектов в более чем
два класс [52]. Переход от бинарной к многоклассовой классификации суще­
ственно усложняет как построение, так и интерпретацию модели [53].

Существуют два стандартных подхода к решению многоклассовой задачи
на основе бинарных классификаторов: стратегия один против всех (one-vs­
rest) и стратегия попарной классификации (one-vs-one). В первом случае
для каждого из 𝐶 классов обучается отдельный бинарный классификатор, ко­
торый отделяет данный класс от объединения всех остальных. Во втором случае
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для каждой из 𝐶(𝐶−1)
2 пар классов строится бинарный классификатор, разли­

чающий только эти два класса, а итоговое решение принимается, например, по
большинству голосов или с использованием процедуры агрегации [54].

Обе стратегии имеют как теоретические, так и практические недостат­
ки. В стратегии один против всех возникает проблема перекоса, связанная с
несбалансированностью классов. При наличии сильно преобладающего клас­
са классификаторы могут склоняться к частому отнесению объекта к этому
классу, даже если признаки ближе к другому. Это приводит к смещению ап­
проксимации и, как следствие, к снижению обоснованности принятого решения.
Дополнительные методы борьбы с дисбалансом, такие как дублирование редких
классов или уменьшение выборки преобладающих, искажают исходное распре­
деление данных, что затрудняет интерпретацию результатов и может приводить
к потере статистической достоверности.

Стратегия попарных классификаторов, напротив, требует построения
большого числа моделей, число которых растёт квадратично с числом клас­
сов. Кроме того, процедура выбора итогового класса по результатам попарных
голосований может быть неоднозначной [55]: возможны случаи, при которых
отсутствует чёткий победитель. При этом каждая отдельная модель опирается
на подмножество данных, и совокупный результат может не учитывать общую
структуру пространства признаков. В результате возникает риск потери согла­
сованности между частными классификаторами, что негативно сказывается на
устойчивости системы в целом.

Таким образом, обобщение бинарной модели на многоклассовую по­
становку сталкивается с рядом фундаментальных затруднений. Проблемы
интерпретируемости, статистической состоятельности и устойчивости приня­
тия решений становятся особенно острыми при наличии несбалансированных
классов и сложной структуры признакового пространства. Эти соображения
подводят к необходимости переосмысления самой постановки задачи классифи­
кации, особенно в ситуациях, когда интерес представляет лишь один или малое
число целевых классов, а остальные данные играют вспомогательную роль.



46

2.8 Применение

Рассмотренные в предыдущих разделах методы бинарной классифика­
ции позволяют успешно решать задачи разделения двух классов на компакте
признакового пространства. В данном разделе рассматриваются примеры,
иллюстрирующие особенности работы моделей, использующих описанную в
разделе 2.3 модификацию, а также проблемы, которые такая модификация поз­
воляет эффективно решать.

2.8.1 Компромисс между точностью классификации и механизмом
отказа

Для оценки влияния предлагаемой модификации классификатора на ка­
чество предсказаний были рассмотрены три синтетических набора данных:
структура “кольцо–круг”, двумерная шахматная разметка 2 × 2 и два пересе­
кающихся гауссовских распределения. Для каждого набора данных построены
решения, полученные классическим классификатором и модифицированным ва­
риантом, что проиллюстрировано на рисунках 2.6 — 2.8.

Экспериментальные результаты показывают, что в отсутствие механизма
отказа классический классификатор достигает практически максимального ка­
чества классификации, составляющего 99–100% на всех рассмотренных наборах
данных. При этом модифицированный классификатор демонстрирует несколь­
ко более низкое значение точности, находящееся в диапазоне 97–98%. Данное
снижение качества связано с тем, что часть объектов, расположенных в об­
ластях повышенной неопределённости, классифицируется как принадлежащая
фоновому классу, а не одному из целевых классов.

Однако при исключении из оценки качества объектов, отнесённых клас­
сификатором к области отказа, точность модифицированной модели возрас­
тает и достигает значений, сопоставимых с классическим классификатором
(99–100%), при доле отказов порядка 0.5–1% от общего числа наблюдений.
Таким образом, модификация классификатора реализует характерный для до­
веренных систем компромисс между точностью и надёжностью предсказаний:
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а) классический классификатор б) модифицированный
классификатор

Рисунок 2.6 — Сравнение классического и модифицированных классификато­
ров

небольшое снижение общей точности достигается за счёт появления механизма
отказа, позволяющего существенно повысить достоверность решений на под­
множестве объектов, для которых классификация выполняется.

Полученные результаты подтверждают, что предлагаемая модификация
не приводит к деградации качества классификации в области компетенции мо­
дели, но при этом обеспечивает принципиально новое свойство – возможность
формализованного отказа от принятия решения в условиях высокой неопре­
делённости, что является ключевым требованием доверенного искусственного
интеллекта.

2.8.2 Поведение вне носителя распределения

Обычные бинарные классификаторы, обученные по конечной выборке без
дополнительного “фона“, склонны выдавать уверенные предсказания даже в тех
точках пространства, где отсутствуют обучающие данные. Это поведение связа­
но с тем, что модель не знает о структуре плотности признаков и минимизирует
ошибку лишь на ограниченном множестве точек.
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а) классический классификатор б) модифицированный
классификатор

Рисунок 2.7 — Сравнение классического и модифицированных классификато­
ров

Рассмотрим демонстрационный пример с двумя классами, заданными в
виде спиралей на двумерной плоскости (красным цветом обозначены точки
класса +1, а синим точки класса −1). На рисунке 2.9а представлено решение,
полученное обычным бинарным классификатором. Видно, что модель уверенно
относит к одному из классов даже точки, расположенные далеко за пределами
области, покрытой обучающими данными.

Для сравнения, если использовать, описанную в разделе 2.4.3 моди­
фицированную процедуру, то классификатор начинает учитывать общую
структуру распределения данных и классифицирует “внешние“ точки как фон
(рисунок 2.9б, фон представлен белым цветов). Это значительно повышает на­
дёжность предсказаний и позволяет говорить о появлении эффекта отказа от
распознавания вне носителя распределения.

2.8.3 Устойчивость

Модели, обучаемые без использования фона, оказываются чрезвычайно
чувствительными к отдельным аномальным точкам. Добавление даже одной
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а) классический классификатор б) модифицированный
классификатор

Рисунок 2.8 — Сравнение классического и модифицированных классификато­
ров

а) классический классификатор б) модифицированный
классификатор

Рисунок 2.9 — Сравнение поведения классификаторов вне носителя

точки может радикально изменить форму решающего правила (рисунок 2.10а).
Это явление лежит в основе так называемых backdoor-атак [56], когда наме­
ренно добавленные в обучающую выборку точки провоцируют нежелательное
поведение модели в заранее заданной области.
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Добавление фона значительно снижает эффект подобных атак (рису­
нок 2.10б). Чтобы в присутствии фона точка начала влиять на решение,
необходимо существенно увеличить её плотность, что требует добавления мно­
жества подобных примеров. Таким образом, обучение с фоном повышает
устойчивость модели к целевым модификациям данных.

а) классический классификатор б) модифицированный
классификатор

Рисунок 2.10 — Сравнение устойчивости классификаторов к backdoor-атаке

2.8.4 Сопоставление нейросетевой и гистограммной регрессии

В разделе 2.4.4 рассматривалось иерархическое разбиение компакта ней­
росетевой моделью на ячейки, на основе которых строилась функция гисто­
граммной регрессии. Визуальное сопоставление результатов нейросетевой и
гистограммной регрессий подтверждает близость этих методов: выход нейро­
сети в силу своей непрерывности плавно переходит от одного класса к другому,
приближая собой ступенчатую структуру гистограммы (рисунок 2.11). Ячей­
ки гистограммы, на которые разбивает пространство персептрон, окрашены в
соответствии со значением ℎ*𝑛(𝑋) в ячейке и визуально очень похожи на вы­
ход нейросети.
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Это наблюдение позволяет рассматривать регрессию на выходе многослой­
ного персептрона как более плавную версию гистограммной аппроксимации,
реализуемую при помощи кусочно-линейных функций.

Рисунок 2.11 — Визуальное сравнение функций нейросетевой и гистограммной
регрессий

2.8.5 Отказ от распознавания и интерпретация выходов

Добавление фона позволяет не только лучше моделировать границу
классов, но и реализовать механизм отказа от распознавания: наблюдения, попа­
дающие в области низкой плотности, классифицируются как “неизвестные“. Это
открывает путь к более гибкому принятию решений – например, маркированию
таких примеров для дополнительного анализа или анализа дополнительных
признаков.

2.8.6 Влияние порога доверия на характеристики классификатора

В рамках предложенного подхода в качестве дополнительного механизма
контроля за качеством классификации вводится параметр β ∈ [0, 1), интерпре­
тируемый как порог доверия. Значение β используется для принятия решения о
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классификации наблюдения: если значение выхода модели по модулю не превы­
шает β, классификатор воздерживается от принятия решения, т.е. формирует
отказ от распознавания.

Введение порога β позволяет контролировать баланс между полнотой
и надёжностью классификационных решений. При низких значениях β клас­
сификатор склонен выдавать решения по всем поступающим наблюдениям,
включая случаи с высокой неопределённостью. При этом возрастает риск оши­
бочной классификации, особенно вблизи границ разделяющих поверхностей.
Повышение значения β ведёт к росту количества отказов от распознавания,
но одновременно повышает достоверность решений по тем наблюдениям, для
которых классификация всё же производится.

На рисунке 2.12 приведена визуализация результатов классификации при
различных значениях порога β: от 0 (классификация осуществляется по всем
наблюдениям) до 0.5 (классификатор выдаёт решение только в случаях высо­
кой уверенности). Видно, что при увеличении β область отказов расширяется
(обозначена белым цветом), что соответствует желаемому поведению системы
в условиях ограниченной уверенности модели.

а) β = 0 б) β = 0.1 в) β = 0.3 г) β = 0.5

Рисунок 2.12 — Влияние порога доверия β на пространственное распределение
классификационных решений

2.9 Экспериментальное исследование доверенного классификатора

Несмотря на широкую практическую применимость нейросетевых моде­
лей, включая многослойный персептрон, их надёжность может быть существен­
но снижена при воздействии целенаправленных возмущений, известных как
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состязательные атаки. Эти атаки используют особенности разделяющей по­
верхности модели для генерации входных данных, вызывающих ошибочную
классификацию, что ставит под вопрос доверие к подобным системам в крити­
чески важных приложениях. В рамках настоящей работы в авторской статье [2]
предложен новый подход к формированию таких примеров специально для
персептрона, получивший название “простая линейная атака на персептрон“
(SLAP, Simple Linear Attack for Perceptron). В данном разделе описывается
предложенная атака и выполняется анализ устойчивости модифицированного
классификатора к её воздействию, что позволяет оценить уровень доверия к
разработанной модели.

2.9.1 Существующие подходы к генерации состязательных
примеров

Наиболее распространённые методы формирования атакующих примеров
основываются на градиентной оптимизации. В частности, метод FGSM (Fast
Gradient Sign Method) [57] и метод проецированного градиентного спуска PGD
(Projected Gradient Descent) [58] находят направления в пространстве входных
признаков, по которым можно максимизировать ошибку классификатора. Одна­
ко такие подходы требуют итеративных вычислений и чувствительны к выбору
гиперпараметров.

Альтернативой являются методы, использующие выпуклую оптимиза­
цию или линейное программирование, например, [59; 60]. В настоящей работе
предложен подход, основанный исключительно на методах линейной алгебры,
позволяющий строить атакующие примеры за счёт решения систем линейных
уравнений или неравенств. Подход ориентирован на персептроны с кусочно­
линейными функциями активации, такими как ReLU, Leaky ReLU и Abs, что
позволяет упростить структуру модели до линейных преобразований при фик­
сированных знаках активации.
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2.9.2 Постановка задачи линейной атаки

Пусть имеется обученный персептрон 𝑐(𝑥), принимающий на вход вектор
𝑥 ∈ R𝑑 и возвращающий вектор выходных значений 𝑦 ∈ R𝐶 , соответствующих
𝐶 классам. Обозначим через 𝑥𝑡 целевой пример (рисунок 2.13а), а через 𝑥𝑎

– пример, который подвергается атаке (рисунок 2.13б). Требуется построить
новый вектор 𝑥 (рисунок 2.13в), близкий к 𝑥𝑎, но классифицируемый так же
(или почти так же), как 𝑥𝑡. Формально, задача формулируется как:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
‖𝑥− 𝑥𝑎‖ → min ,

‖𝑥− 𝑥𝑡‖ > 0,

𝑐(𝑥) = 𝑐(𝑥𝑡),

или

⎧⎪⎪⎪⎨⎪⎪⎪⎩
‖𝑥− 𝑥𝑎‖ → min ,

‖𝑥− 𝑥𝑡‖ > 0,

argmax 𝑐(𝑥) = argmax 𝑐(𝑥𝑡).

а) 𝑥𝑡 – целевой пример б) 𝑥𝑎 – пример,
подвергающийся атаке

в) 𝑥 – построенный
атакующий пример

Рисунок 2.13 — Примеры, участвующие в атаке на многослойный персептрон

Для повышения скрытности атаки накладываются ограничения на диа­
пазон допустимых значений 𝑥 ∈ [𝑥min, 𝑥max], где, например, для изображений
естественно полагать 𝑥min = 0, 𝑥max = 1.

2.9.3 Атака на однослойный персептрон

Рассмотрим случай одного слоя, где выходной вектор модели задаётся
как 𝑦 = 𝑊𝑥 + 𝑏, причём 𝑊 ∈ R𝐶×𝑑, 𝑏 ∈ R𝐶 .
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Без учёта ограничений на входные значения

Предположим, что матрицу 𝑊 можно разбить на подматрицы 𝑊1 ∈ R𝐶×𝐶

и 𝑊2 ∈ R𝐶×(𝑑−𝐶), выбрав, например, первые (или случайные для большей неза­
метности) 𝐶 столбцов (предполагается, что в этом случа количество классов
меньше, чем размер входного пространства). Аналогично разбиваем вектор 𝑥𝑎

на 𝑥𝑎1 ∈ R𝐶 и 𝑥𝑎2 ∈ R𝑑−𝐶 . Тогда атакующий вектор может быть получен по
формуле:

𝑥* = 𝑊−1
1 · (𝑏⊤ −𝑊2𝑥𝑎2),

а полное решение восстанавливается как конкатенация 𝑥 = [𝑥*, 𝑥𝑎2] (рису­
нок 2.14).

Рисунок 2.14 — Схема матричной атаки

Данный метод работает исключительно в случае, если матрица 𝑊1 обра­
тима (что почти всегда выполняется при случайной инициализации). Однако
он не учитывает допустимые границы значений и чувствителен к квантованию,
происходящему при сохранении изображения в файл (рисунок 2.15).
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а) 𝑥𝑡 – целевой пример б) 𝑥𝑎 – пример,
который подвергается

атаке

в) 𝑥 – построенный
атакующий пример

Рисунок 2.15 — Пример матричной атаки, 𝑥 ∈ [−1055, 926]

С учётом ограничений

Более реалистичный подход включает в себя формулировку задачи как
квадратичной оптимизации:⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
2𝑥
⊤𝑃𝑥+ 𝑞⊤𝑥→ min ,

𝐴𝑥 = 𝑏,

𝑥min ⩽ 𝑥 ⩽ 𝑥max,

где в простейшем случае 𝑃 = 𝐸 – единичная матрица, 𝑞 = −𝑥𝑎, 𝐴 = 𝑊 ,
𝑏 = 𝑦𝑡 − 𝑏. Тогда задача принимает вид:⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
2𝑥
⊤𝑥+ 𝑥⊤𝑎 𝑥→ min ,

𝑊𝑥 = 𝑦𝑡 − 𝑏,

𝑥 ∈ [𝑥min, 𝑥max].

При невозможности точного воспроизведения 𝑦𝑡 возможно ослабление
условий за счёт введения допусков ε:

𝑦𝑡 − ε ⩽ 𝑊𝑥+ 𝑏 ⩽ 𝑦𝑡 + ε.

Эти неравенства легко переписываются в канонической форме для QP­
решателей. Пример применения данного вида атаки приведён на рисунке 2.16.
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а) 𝑥𝑡 – целевой пример б) 𝑥𝑎 – пример,
который подвергается

атаке

в) 𝑥 – построенный
атакующий пример

Рисунок 2.16 — Пример QP атаки

2.9.4 Атака на многослойный персептрон

При наличии нескольких слоёв в сети возникает проблема нелинейности
из-за активационных функций. Однако, если эти функции кусочно-линейны
(ReLU, Leaky ReLU, Abs), то при фиксированных знаках аргументов они пред­
ставляют собой линейные отображения. Например, функция ReLU ведёт себя
как 𝑥 при 𝑥 ⩾ 0 и как 0 при 𝑥 < 0.

Рассмотрим модель из трёх слоёв:

𝑦 = 𝑊3 · 𝑓2(𝑊2 · 𝑓1(𝑊1𝑥+ 𝑏1) + 𝑏2) + 𝑏3.

Предположим, что знаки активации известны (например, получены от
прямого прохода по 𝑥𝑡). Тогда последовательное раскрытие слоёв позволяет
свести сеть к линейной модели. Например, если все значения после первого
слоя положительны (т.е. активация 𝑓1 действует как тождественная функция),
а после второго – отрицательны (и активация действует как умножение на кон­
станту), можно получить:⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑊1𝑥+ 𝑏1 ⩾ 0

𝑊2𝑊1𝑥+𝑊2𝑏1 + 𝑏2 ⩽ 0

𝑦 = −(𝑊3𝑊2𝑊1𝑥+𝑊3𝑊2𝑏1 +𝑊3𝑏2) + 𝑏3
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где коэффициенты 𝑊321, 𝑏321 выражаются через произведения матриц весов и
сдвигов. Тогда атака сводится к аналогичной задаче QP, но при дополнитель­
ных ограничениях на знаки промежуточных переменных:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑊21 = 𝑊2𝑊1

𝑏21 = 𝑊2𝑏1 + 𝑏2

𝑊321 = −𝑊3𝑊2𝑊1

𝑏321 = 𝑏3 −𝑊3𝑊2𝑏1 −𝑊3𝑏2

𝑊1𝑥+ 𝑏1 ⩾ 0

𝑊21𝑥+ 𝑏21 ⩽ 0

𝑦 = 𝑊321𝑥+ 𝑏321

Пример атаки на многослойный персептрон представлен на рисунке 2.17.

а) 𝑥𝑡 – целевой пример б) 𝑥𝑎 – пример,
который подвергается

атаке

в) 𝑥 – построенный
атакующий пример

Рисунок 2.17 — Пример атаки на многослойный персептрон на датасете Cat-vs­
Dog [61]

2.9.5 Генерация произвольных входов с заданным выходом

Так как размерность входа чаще всего превышает размерность выхода, за­
дача построения входа 𝑥, удовлетворяющего 𝑐(𝑥) = 𝑦𝑡, имеет бесконечно много
решений. В этом случае можно случайным образом зафиксировать некоторые
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координаты 𝑥, оставляя другие свободными, и решать полученную переопреде­
лённую систему. Это позволяет формировать обширные множества атакующих
примеров, обладающих одинаковым выходом сети.

На рисунке 2.18 приведены примеры атакующих изображений. В первом
столбце расположены целевые изображения, соответствующие заданному выхо­
ду модели. Второй столбец содержит атакующие примеры, полученные путём
минимального возмущения других исходных изображений с целью приведения
их к тому же выходу. Остальные столбцы демонстрируют изображения, сгене­
рированные методом случайного поиска при условии воспроизведения целевого
выхода. Все изображения в пределах одной строки имеют идентичный выход­
ной вектор персептрона, несмотря на различия в визуальном представлении.

Рисунок 2.18 — Пример генерации атакующих примеров
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2.9.6 Экспериментальное исследование

Алгоритм был реализован и протестирован на простых персептронах, обу­
ченных на датасетах MNIST [62] и CIFAR-10 [63]. Для каждого изображения из
тестовой выборки выбиралось случайное изображение другого класса, и приме­
нялась атака, направленная на минимальное изменение первого изображения с
целью получения выхода второго. В эксперименте оценивалась ℓ∞-норма между
оригиналом и атакующим примером. Результаты приведены в таблице 1.

Таблица 1 — Результаты применения SLAP атаки

Модель Набор Accuracy Атака на значения Атака на класс
ℓ∞ Accuracy ℓ∞ Accuracy

10

MNIST

0.9288 0.019 0.003 0.019 0.002
10-10 0.9326 0.021 0.007 0.022 0.001
100-10 0.9805 0.052 0.009 0.051 0.005
1000-10 0.9849 0.091 0.012 0.092 0.009
160-80-40-20-10 0.9792 0.117 0.000 0.114 0.000
10

CIFAR10

0.3989 0.027 0.014 0.024 0.011
100-10 0.4853 0.054 0.032 0.055 0.018
1000-10 0.5236 0.095 0.041 0.096 0.023
320-160-80-40-10 0.5353 0.121 0.049 0.119 0.037

Результаты показывают, что при использовании простых архитектур уда­
ётся достигать атакующих примеров с минимальными отклонениями, зачастую
визуально незаметными. При переходе к более глубоким моделям число необ­
ходимых изменений возрастает, что объясняется более сложной геометрией
границ принятия решений.

2.9.7 Устойчивость модифицированного классификатора к данной
атаке

Модифицированный (доверенный) классификатор предназначен для ра­
боты с данными малой размерности, поэтому экспериментальная проверка
устойчивости проводилась на модельном двумерном наборе данных, представ­
ляющем собой два витка спирали.
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Для стандартного многослойного персептрона SLAP-атака успешно стро­
ит атакующие примеры. Найденные точки часто оказываются в областях
пространства, вне визуально определяемого носителя данных (спирали), что,
однако, не препятствует их успешной классификации моделью (рисунок 2.19а).
Обучающие данные представлены в виде точек с белой обводкой. Атакующие
точки представлены с чёрной обводкой (цвет точек инвертирован для боль­
шей контрастности). Компакт, внутри которого принимается решение обозначен
пунктирной линией.

В случае модифицированного классификатора результаты принципиально
иные (рисунок 2.19б):

– Без учёта ограничений: при решении системы линейных уравнений
алгоритм формально находит атакующую точку, но она практически
всегда оказывается вне заданного компакта (допустимой области опре­
деления модели), что делает такой пример легко детектируемым.

– С учётом ограничений: при формулировке задачи как квадратичной
оптимизации с условиями 𝑥 ∈ [𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥] в подавляющем большинстве
случаев допустимое решение не существует. Это означает, что не удаёт­
ся найти точку, одновременно удовлетворяющую условию смены класса
и остающуюся в доверенной области модели. В тех же случаях, когда
решение удаётся найти, оно оказывается близко к границе компакта в
отдалении от носителя распределения и также может быть легко обна­
ружено путём анализа выбросов.

а) обычный классификатор б) доверенный классификатор
Рисунок 2.19 — Устойчивость доверенного классификатора к SLAP атаке
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Данные наблюдения свидетельствуют о высокой устойчивости модифици­
рованного классификатора к SLAP-атаке. Наличие фоновых точек эффективно
сужает пространство возможных атак, требуя от злоумышленника создания ли­
бо тривиально обнаруживаемых (выходящих за границы), либо вычислительно
труднодостижимых возмущений. Таким образом, модифицированный класси­
фикатор демонстрирует качественно более высокий уровень доверия с точки
зрения устойчивости к целенаправленным состязательным воздействиям.

2.10 Выводы

Представленная в данном разделе математическая модель модифициро­
ванного байесовского классификатора, предназначена для создания доверенных
решающих систем при малой размерности данных. Доказанная теорема гаран­
тирует корректный отказ от классификации вне носителя распределения, что
обеспечивает предложенной модели статистическую обоснованность, отсутству­
ющую у стандартных нейросетевых классификаторов. Ключевой практической
реализацией этой теоретической конструкции является аппроксимация байесов­
ского решающего правила с помощью многослойного персептрона, дополненно­
го механизмом явного ограничения области принятия решений.

Важным аспектом разработанного подхода является обеспечение стати­
стической интерпретируемости модели. Предложенное объясняющее двоичное
дерево eXBTree позволяет анализировать локальную уверенность классифика­
тора и предоставляет инструмент для понятного объяснения его решений, что
критически важно для доверенных систем.

Практическим следствием такого подхода является достижение двух взаи­
мосвязанных целей: статистически корректного поведения модели на фоновых
областях и существенного повышения устойчивости к состязательным атакам.
Экспериментальная проверка с использованием метода SLAP подтвердила, что
модифицированный классификатор успешно противостоит целенаправленным
возмущениям - атакующие примеры либо оказываются за границами допустимо­
го компакта и становятся легко детектируемыми, либо не могут быть построены
без нарушения базовых ограничений модели. Таким образом, работа демонстри­
рует возможность построения доверенных классификаторов, которые сочетают
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эффективность нейросетевой аппроксимации со статистической строгостью бай­
есовского подхода в условиях малой размерности данных.
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Глава 3. Унарная классификация

Описанный в предыдущем разделе доверенный бинарный классификатор,
несмотря на свои теоретические преимущества, сталкивается с существенной
практической проблемой: его устойчивость и качество предсказаний критиче­
ски зависят от сбалансированности обучающих данных. В реальных сценариях
данные часто обладают выраженным дисбалансом классов, что приводит к сме­
щённым оценкам плотности и, как следствие, к снижению надёжности модели.
Это противоречит самой цели создания доверенной системы, так как её решения
становятся статистически необоснованными для слабо представленного класса.

В данной главе предлагается новый подход, называемый унарной клас­
сификацией. Вместо одновременного моделирования двух классов в фокусе
оказывается только целевой класс, а данные противостоящего класса исклю­
чаются из процесса обучения персептрона. Такой подход позволяет полностью
устранить влияние дисбаланса, сфокусировать ресурсы модели на точном опи­
сании целевого распределения и, как результат, построить более устойчивую
и предсказуемую систему, соответствующую требованиям доверенного искус­
ственного интеллекта в условиях несбалансированных данных.

3.1 Нейросетевая регрессия для единственного класса

Как отмечалось в разделе 2.4.3, многослойный персептрон с кусочно­
линейной функцией активации способен осуществлять ε-приближённую аппрок­
симацию любой непрерывной функции на компакте. При наличии 𝐿 скрытых
слоёв с 𝑘 нейронами в каждом, структура такой сети задаёт иерархическое
разбиение компакта [0, 1]𝑑 на 𝑂(𝑘𝑑𝐿) ячеек, внутри которых выход модели яв­
ляется линейной функцией. Вычисление значения сети в произвольной точке
𝑥 ∈ [0, 1]𝑑 требует лишь последовательных операций скалярного произведения
и сравнения, что обеспечивает высокую вычислительную эффективность.

Для построения унарного классификатора вводится обобщённая задача
регрессии. Пусть имеется выборка наблюдений {𝑋𝑖}𝑛𝑖=1 - независимые одина­
ково распределённые случайные величины на компакте [0, 1]𝑑 с неизвестной
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ограниченной плотностью 𝑓(𝑋). Эта выборка интерпретируется как наблюде­
ния целевого процесса, каждому из которых сопоставляется метка 𝑌𝑖 = 1.
Дополнительно формируется фоновый набор {𝑋𝑖}2𝑛𝑖=𝑛+1 - независимые равно­
мерно распределённые на [0, 1]𝑑 случайные величины с метками 𝑌𝑖 = 0. В
результате получается сбалансированный комбинированный набор {(𝑋𝑖, 𝑌𝑖)}2𝑛𝑖=1

мощности 2𝑛.
Рассмотрим теперь задачу построения аппроксимирующей полносвязной

нейросети 𝑐𝑛(𝑋), решающей задачу регрессии в классе моделей фиксирован­
ной сложности, аналогичную задаче (2.10). Требуется найти такую нейросеть
𝑐*𝑛(𝑋), минимизирующую среднеквадратичную ошибку на объединённом набо­
ре данных:

2𝑛∑︁
𝑖=1

(𝑐𝑛(𝑋𝑖)− 𝑌𝑖)
2 → min

𝑐𝑛
, (3.1)

где минимум берётся по всем полносвязным нейросетям, общее число нейронов
в которых не превышает заданного порогового значения 𝑘𝐿 + 1.

Полученную в результате оптимизации модель, будем называть нейросе­
тевым унарным классификатором. Принятие решения о принадлежности
наблюдения классу будет осуществляться при превышении выходного значения
персептрона порога доверия β ∈ [0, 1):

𝑐*𝑛(𝑋) > β.

3.2 Гистограммная регрессия для единственного класса

Пусть в результате построения 𝑐*𝑛(𝑋) на компакте [0, 1]𝑑 получено раз­
биение на 𝑁 ячеек 𝐾 = {𝐾1, 𝐾2, . . . , 𝐾𝑁}. Введём далее кусочно-постоянную
функцию ℎ𝑛(𝑋), принимающую постоянные значения внутри каждой ячейки
𝐾𝑟, и сформулируем задачу приближённой оценки вероятности принадлежно­
сти наблюдения классу 𝑌 = 1 в виде:

2𝑛∑︁
𝑖=1

(ℎ𝑛(𝑋𝑖)− 𝑌𝑖)
2 → min

ℎ𝑛

. (3.2)
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Как и в (2.11), задача (3.2) может быть решена независимо в каждой
ячейке 𝐾𝑟, при этом оптимальное значение ℎ*𝑛(𝑋) в данной ячейке определя­
ется соотношением:

ℎ*𝑛(𝑋) =
𝑛1(𝑋)

𝑛1(𝑋) + 𝑛0(𝑋)
, (3.3)

где 𝑛1(𝑋) – количество наблюдений с меткой 𝑌 = 1 в ячейке, содержащей точку
𝑋, а 𝑛0(𝑋) – количество фоновых наблюдений (с меткой 𝑌 = 0) в той же ячейке.

Пример вычисления функции гистограммной регрессии показан на рисун­
ке 3.1.

Рисунок 3.1 — Пример вычисления ℎ*𝑛(𝑋) в некоторой ячейке 𝐾𝑟 в унарном
случае

Полученная функция ℎ*𝑛(𝑋) представляет собой гистограммную оценку
апостериорной вероятности принадлежности наблюдения 𝑋 к целевому рас­
пределению, основанную на разбиении, полученном с помощью нейросетевой
аппроксимации.

Теорема 4 (О сходимости нейросетевой и гистограммной регрессий). Пусть
задана последовательность многослойных персептронов, обученных на выбор­
ке из 𝑛 наблюдений из распределения с ограниченной плотностью на [0, 1]𝑑,
с модульной функцией активации, архитектура которых состоит из перво­
го слоя ширины 𝑟𝑛, 𝐿𝑛 слоёв ширины 𝑘𝑛 и одноэлементного последнего слоя с
линейной активацией, при условии, что весовые коэффициенты инициализи­
руются независимо из непрерывного распределения, а параметры первого слоя
заморожены при обучении, если целевая функция является кусочно-гладкой и
выполнены ограничения:

(i) Число ненулевых параметров:

𝑆nnz,𝑛 = 𝑐′1 ·max
{︁
𝑛

𝑑
2β+𝑑 , 𝑛

𝑑−1
α+𝑑−1

}︁
. (3.4)

(ii) Ограничение на величины параметров:

𝐵𝑛 ⩽ 𝑐1 𝑛
𝑠. (3.5)
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(iii) Количество слоёв после первого:

𝐿𝑛 ⩽ 𝑐1

(︁
1 + max

{︀
β
𝑑 ,

α
2(𝑑−1)

}︀)︁
. (3.6)

(iv) Число нейронов в первом слое:

𝑟𝑛 ⩾ 2𝑑. (3.7)

(v) Ограничение на скорость роста архитектуры:

𝑘𝐿𝑛 min(𝑑,𝑘𝑛)
𝑛 𝑟𝑑𝑛 = 𝑜(𝑛), (3.8)

𝑘𝐿𝑛 min(𝑑,𝑘𝑛)
𝑛 𝑟𝑑𝑛 𝑑 (𝑘𝑛𝐿𝑛 + 𝑟𝑛) log(𝑘𝑛𝐿𝑛 + 𝑟𝑛)

log 𝑛

𝑛
→ 0. (3.9)

(vi) Ограничения на ширину первого слоя (для произвольного γ > 0):

∞∑︁
𝑛=1

𝑒
−𝑐γ4𝑟𝑛

𝑑2 < ∞, (3.10)

𝑟𝑛 ⩾ 𝐶 γ−12
𝑑7

2π
. (3.11)

Тогда

(𝑐𝑛(𝑋)− ℎ𝑛(𝑋))
𝑃−→ 0. (3.12)

Доказательство теорем. 4 приведено в приложении Б.2. Данная теорема
обосновывает статистическую состоятельность классификатора на основе мно­
гослойного персептрона с кусочно-линейными функциями активации скрытых
слоёв.

3.3 Вероятностная интерпретация унарной классификации

Построенный унарный классификатор допускает естественную вероят­
ностную интерпретацию, связывающую его выход с оценкой плотности целевого
распределения. Для этого рассмотрим гистограммные оценки плотностей, соот­
ветствующие двум компонентам обучающей выборки:

𝑓𝑛(𝑋) =
𝑛1(𝑋)

𝑛 · 𝑉 (𝐾𝑟)
, 𝑝𝑛(𝑋) =

𝑛0(𝑋)

𝑛 · 𝑉 (𝐾𝑟)
,



68

где 𝑉 (𝐾𝑟) - мера ячейки 𝐾𝑟, 𝑛1(𝑋) - число целевых наблюдений в этой ячейке,
𝑛0(𝑋) - число фоновых наблюдений.

Апостериорная вероятность, оцениваемая гистограммным методом, может
быть выражена через эти плотности:

ℎ*𝑛(𝑋) =
𝑓𝑛(𝑋)

𝑓𝑛(𝑋) + 𝑝𝑛(𝑋)
.

Учитывая, что фоновые данные распределены равномерно (𝑝(𝑋) ≡ 1

на компакте [0, 1]𝑑), и принимая 𝑝𝑛(𝑋) в качестве оценки этой постоянной
плотности, можно выразить оценку плотности целевого распределения непо­
средственно через выход обученного нейросетевого классификатора 𝑐*𝑛(𝑋):

𝑓𝑛(𝑋) ≈ 𝑐*𝑛(𝑋)

1− 𝑐*𝑛(𝑋)
.

Таким образом, унарный классификатор на основе персептрона представ­
ляет собой не только решающее правило, но и потенциально эффективный
непараметрический метод оценки плотности распределения. В отличие от клас­
сических непараметрических методов, унарному классификатору не требуется
хранить всю обучающую выборку целиком - вся информация о распределении
инкапсулируется в параметрах обученной нейронной сети. Более того, вычисле­
ние оценки плотности в новой точке сводится к одному прямому проходу через
сеть, что обеспечивает существенно более высокую вычислительную эффектив­
ность по сравнению с методами, требующими обращения ко всем обучающим
данным. Это делает предложенный подход перспективным для задач, где важ­
ны как точность оценки плотности, так и скорость работы модели в режиме
реального времени.

3.4 Случай нескольких классов

В случае многоклассовой классификации (𝐶 > 2) предлагаемая конструк­
ция унарных классификаторов сохраняет свою применимость и обладает рядом
существенных преимуществ по сравнению с классическим подходом, основан­
ным на многоклассовой нейронной сети или на парных классификаторах “один
против одного”. Прежде всего, при использовании унарной схемы для каждого



69

класса 𝑐 = 1, . . . , 𝐶 строится собственный унарный классификатор, обученный
различать носитель класса 𝑐 от фонового равномерного распределения.

Таким образом, требуется построить 𝐶 независимых классификаторов,
каждый из которых решает задачу бинарной классификации в формате “объ­
екты данного класса против фона”. В отличие от схемы “один против одного”,
где количество классификаторов составляет 𝐶(𝐶−1)

2 , унарная схема масштаби­
руется линейно по числу классов и не требует сложных стратегий агрегации
результатов голосования.

3.5 Преимущества унарной классификации

Ключевым достоинством унарного подхода является полная устойчивость
к проблеме дисбаланса классов. Каждый классификатор обучается только на
положительных объектах своего класса и на независимом фоновом множестве,
совпадающим по размеру. Таким образом, влияние других, возможно много­
численных, классов исключается на этапе обучения, и несбалансированность
исходного обучающего множества не приводит к смещению в сторону более
представленных классов.

Кроме того, каждый классификатор формирует свою собственную аппрок­
симацию апостериорной вероятности 𝑐

(𝑖)
𝑛 (𝑥), оценивая степень принадлежности

точки 𝑥 классу 𝑖. Совокупность таких значений (𝑐
(1)
𝑛 (𝑥), . . . , 𝑐

(𝐶)
𝑛 (𝑥)) образу­

ет векторную оценку, позволяющую как выбрать наиболее вероятный класс
(например, по максимуму), так и сформулировать стратегию отказа, если все
оценки не превышают заданного порога β. Последнее обеспечивает возмож­
ность построения отказоустойчивой классификационной системы, способной
помечать сомнительные случаи как требующие дополнительного рассмотрения.

Ещё одним немаловажным преимуществом является модульность архитек­
туры: поскольку все классификаторы независимы, допускается использование
различной архитектуры (в том числе различной глубины и сложности) для раз­
личных классов. Это даёт возможность адаптировать модель под особенности
каждого из классов, делая систему более гибкой и устойчивой к неоднородно­
сти обучающих данных.
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3.6 Оценка качества унарных классификаторов

При оценке качества стандартных многоклассовых классификаторов тра­
диционно используют метрики точности, полноты, 𝐹1-score и аналогичные [64].
Однако в контексте унарной классификации такие показатели оказываются
недостаточно информативными, так как каждый классификатор в унарной схе­
ме обучается независимо и ориентирован на различение своего целевого класса
от фонового распределения. В частности, стандартная точность не учитывает
случаи “отказа” классификатора (когда выход нейросети не превышает порог
β), а 𝐹1-score и подобные метрики не отражают взаимное влияние классифика­
торов при многоклассовой интерпретации.

Для более детальной оценки работы унарного классификатора предлага­
ется рассматривать три дополнительных свойства: мощность, эффективность
и меру неразделимости классов.

3.6.1 Мощность классификатора

Мощность классификатора 𝑐(𝑖)(𝑥) определяется как доля точек целево­
го класса 𝑖, принимаемых классификатором, то есть для которых выходная
аппроксимация апостериорной вероятности превышает заданный порог β. Фор­
мально для двух классов показатели вычисляются следующим образом:

𝑛
(1)
1 =

𝑛(1)∑︁
𝑖=1

I{𝑐(1)(𝑥𝑖)⩾β}, 𝑛
(2)
2 =

𝑛(2)∑︁
𝑖=1

I{𝑐(2)(𝑥𝑖)⩾β},

𝑝(1) =
𝑛
(1)
1

𝑛(1)
, 𝑝(2) =

𝑛
(2)
2

𝑛(2)
,

где 𝑛(1) и 𝑛(2) – количество наблюдений классов 1 и 2 соответственно. Мощность
позволяет оценить долю объектов класса, корректно распознанных классифи­
катором без отказа, и является базовой характеристикой “чувствительности”
модели к своему классу.

Для получения интегральной характеристики мощности всей пары клас­
сификаторов можно использовать гармоническое среднее:
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𝑃12 =
2𝑝(1)𝑝(2)

𝑝(1) + 𝑝(2)
.

Метрика 𝑃12 отражает общую способность пары классификаторов кор­
ректно распознавать свои классы. При этом, если один из классификаторов
имеет низкую мощность, интегральная метрика также будет снижена, что ин­
туитивно соответствует снижению общей чувствительности системы.

3.6.2 Эффективность классификатора

Эффективность характеризует способность классификатора корректно
выделять объекты своего класса относительно других классификаторов. Для
двух классов вводятся следующие показатели:

𝑛
(1)
10 =

𝑛(1)∑︁
𝑖=1

I{𝑐(1)(𝑥𝑖)⩾β∧𝑐(2)(𝑥𝑖)<β}, 𝑛
(2)
02 =

𝑛(2)∑︁
𝑖=1

I{𝑐(2)(𝑥𝑖)⩾β∧𝑐(1)(𝑥𝑖)<β},

𝑒(1) =
𝑛
(1)
10

𝑛(1)
, 𝑒(2) =

𝑛
(2)
02

𝑛(2)
.

Показатели качества классификатора 𝑒(𝑖) отражают долю объектов, кор­
ректно распознанных своим классификатором и отвергнутых чужим(и). На их
основе определяется интегральная метрика эффективности:

𝐸12 =
2𝑒(1)𝑒(2)

𝑒(1) + 𝑒(2)
.

Метрика 𝐸12 аналогична гармоническому среднему и позволяет количе­
ственно оценить согласованность работы классификаторов при минимизации
взаимных ошибок.

3.6.3 Мера неразделимости классов

Для количественной оценки степени пересечения областей, признанных
обоими классификаторами, вводится понятие меры неразделимости классов.
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Внутренние показатели, характеризующие долю объектов, которые одновремен­
но принимаются обоими классификаторами, интерпретируются как свойство
наплываемости классов:

𝑛
(1)
12 =

𝑛(1)∑︁
𝑖=1

I{𝑐(1)(𝑥𝑖)⩾β∧𝑐(2)(𝑥𝑖)⩾β}, 𝑛
(2)
12 =

𝑛(2)∑︁
𝑖=1

I{𝑐(2)(𝑥𝑖)⩾β∧𝑐(1)(𝑥𝑖)⩾β},

𝑔(1) =
𝑛
(1)
12

𝑛(1)
, 𝑔(2) =

𝑛
(2)
12

𝑛(2)
,

На основе этих показателей определяется интегральная мера нераздели­
мости классов:

𝐺12 =
2𝑔(1)𝑔(2)

𝑔(1) + 𝑔(2)
.

Метрика 𝐺12 отражает, насколько сильно области, распознаваемые раз­
личными классификаторами, перекрываются. Высокое значение 𝐺12 свидетель­
ствует о значительном наплывании классов друг на друга и, следовательно, о
потенциальной сложности их разделения в пространстве признаков.

3.6.4 Визуализация метрик

Для иллюстрации поведения предложенных метрик рассмотрены три мо­
дельные ситуации и описаны значения интегральных показателей мощности,
эффективности и меры неразделимости классов. Для сопоставления приведе­
ны также значения стандартных метрик бинарной классификации (accuracy,
precision, recall, 𝐹1).

1. Два разнесённых гауссиана. Классы линейно разделимы (рису­
нок 3.2а). Мощности обоих классификаторов равны единице (𝑝(1) =

𝑝(2) = 1), эффективность также равна единице (𝐸12 = 1), мера нераз­
делимости равна нулю (𝐺12 = 0). Классические метрики accuracy,
precision, recall и 𝐹1 также принимают значение 1.

2. Три гауссиана с вложением одного класса в другой. Второй
класс полностью лежит внутри первого (рисунок 3.2б). Мощность пер­
вого классификатора равна 1, второго – равна 0 (𝑝(1) = 1, 𝑝(2) = 0),
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интегральный показатель мощности 𝑃12 = 0. Эффективность первого
классификатора равна 0.5, второго — 0 (𝑒(1) = 0.5, 𝑒(2) = 0), что даёт
𝐸12 = 0. Наплываемость первого классификатора равна 0.5, второго
– 1, интегральная мера неразделимости 𝐺12 = 0.75. Для стандартных
метрик accuracy, precision, recall и 𝐹1 равны 2/3.

3. Два полностью совпадающих гауссиана. Классы неразделимы
(рисунок 3.2в). Мощность обоих классификаторов равна нулю (𝑝(1) =
𝑝(2) = 0), что даёт 𝑃12 = 0. Эффективность также равна нулю (𝐸12 = 0).
Наплываемость обоих классификаторов максимальна (𝐺12 = 1). При
этом accuracy, precision, recall и 𝐹1 принимают значение 0.5.

а) разделимые классы б) второй класс вложен
в первый

в) совпадающие классы

Рисунок 3.2 — Модельные ситуации для анализа метрик

Таким образом, видно, что предложенные показатели позволяют разли­
чать случаи, в которых стандартные метрики дают одинаковые значения, но
интерпретация существенно различается.

3.6.5 Обобщение на многоклассовый случай

Для системы из 𝐶 > 2 унарных классификаторов аналогичные метрики
могут быть вычислены попарно для каждой пары классификаторов, что поз­
воляет получить полную картину взаимодействия классов. В то же время для
оценки качества отдельных классификаторов достаточно использовать показа­
тели мощности, а для анализа пересечений и эффективности – соответствующие
обобщённые гармонические средние по всем парам. Такой подход обеспечивает
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более информативную и детализированную оценку по сравнению с традицион­
ными многоклассовыми метриками и учитывает особенности работы унарной
схемы: независимость классификаторов, возможность отказа и линейную мас­
штабируемость по числу классов.

3.7 Иллюстрация работы на модельных примерах

Для наглядной демонстрации описанного подхода были построены унар­
ные классификаторы для одного, двух и четырёх классов на модельных данных.
В каждом случае в качестве фона использовались равномерно распределённые
точки на единичном квадрате [0, 1]2, а положительные объекты представляли
собой выборки из компактных, хорошо различимых распределений.

На рисунке 3.3 показана граница принятия решения, построенная унар­
ным классификатором для одного класса. Видно, что модель успешно выделяет
область высокой плотности положительного класса, отсекая фон.

На рисунке 3.4 приведены результаты построения двух независимых унар­
ных классификаторов для двух классов. Каждый классификатор определяет
свою область плотности, и итоговая классификация осуществляется по наи­
большей из двух аппроксимаций.

Наиболее показательный случай – построение унарных классификаторов
для четырёх классов с искусственно созданным дисбалансом. Один из классов
содержит в семь раз больше наблюдений, чем другой, ещё один – в пять раз
больше и ещё один в три раза больше. Тем не менее, благодаря независимому
обучению каждого классификатора на своём классе и фоновом множестве, об­
ласти приятия решения получаются хорошо различимыми и не искаженными
из-за дисбаланса. Это подтверждает устойчивость метода к нарушению про­
порций классов (рисунок 3.5).



75

Рисунок 3.3 — Классификация данных одного класса с использованием унарной
схемы

3.8 Работа на реальных данных

Практическая значимость любого алгоритма машинного обучения под­
тверждается его работоспособностью на реальных данных. Для оценки пред­
ложенного метода унарной классификации был выбран ряд общедоступных
табличных наборов из репозитория UC Irvine Machine Learning Repository [65],
типичных для задач анализа данных малой и средней размерности. Наборы
включают Iris (𝑑 = 4), tic-tac-toe (𝑑 = 9), liver disease (𝑑 = 10), wine quality
(𝑑 = 11) и heart disease (𝑑 = 13). Они различаются как по размерности, так
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Рисунок 3.4 — Унарная классификация для двух классов

Рисунок 3.5 — Унарная классификация для четырёх классов с дисбалансом

и по степени выраженности дисбаланса классов: от сбалансированной выборки
Iris (соотношение 1:1:1) до наборов с заметным преобладанием одного класса,
таких как tic-tac-toe (1:1.7) и wine quality (1:2). Такой подбор позволяет про­
верить метод в условиях, приближенных к реальным задачам классификации,
где дисбаланс является частым явлением.

Для сравнения в качестве базового практического решения использовал­
ся классификатор XGBoost – популярный и эффективный алгоритм, хорошо
зарекомендовавший себя для работы с табличными данными. Цель сравнения
– показать, что предложенный метод, обладая формальными теоретическими
гарантиями, демонстрирует предсказательную способность, сопоставимую с ши­
роко применяемым на практике инструментом.
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Результаты эксперимента, представленные в таблице 2, показывают, что
метод унарной классификации демонстрирует конкурентоспособные результа­
ты. На сбалансированном наборе Iris с малой размерностью метод показывает
превосходство, что согласуется с теоретическим ожиданием его эффективно­
сти в подобных условиях. Важным является результат на наборе tic-tac-toe,
где при наличии заметного дисбаланса (1:1.7) и умеренной размерности (𝑑 = 9)
предложенный алгоритм также показывает более высокое качество. На наборах
большей размерности (liver disease, wine quality) результаты методов довольно
близки, а на heart disease (𝑑 = 13) унарный классификатор вновь демонстрирует
небольшое преимущество. Эти результаты свидетельствуют о том, что подход
не только сохраняет высокую предсказательную силу на реальных данных, но
и проявляет ожидаемую устойчивость в условиях дисбаланса, эффективно ра­
ботая как в малой, так и в средней размерности.

Таблица 2 — 𝑓1 мера на реальных наборах
данных
Набор данных 𝑑 Unary XGBoost
Iris 4 0.941 0.933
tic tac toe 9 0.992 0.967
Liver disease 10 0.815 0.824
Wine quality 11 0.789 0.797
Heart disease 13 0.798 0.788

3.9 Использование унарной классификации для обработки
некомплектных данных

Одной из распространённых проблем прикладного машинного обучения
является наличие некомплектных данных - наборов с пропущенными значения­
ми некоторых признаков [66]. Классические методы заполнения (среднее, мода,
k-ближайших соседей [67]) зачастую вносят систематическое смещение и не учи­
тывают структуру задачи классификации. В качестве альтернативы в работе [7]
был предложен метод, использующий унарную классификацию для вероятност­
ного заполнения пропусков непосредственно в процессе обучения модели.
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Суть метода заключается в итеративном дообучении персептрона на
данных с пропусками. На каждой эпохе для объектов с некомплектными призна­
ками пропуски временно заполняются случайными значениями. Полученный
объект включается в обучающую выборку текущей эпохи с вероятностью, рав­
ной выходу обучаемой модели (функции 𝑐

(𝑗)
𝑛 (𝑋) для класса 𝑗). Это позволяет

адаптивно заполнять пропуски, ориентируясь на уверенность модели, и обучать
классификатор без фиксированного искажения данных.

Метод демонстрирует практическую применимость унарной классифика­
ции для решения задачи обучения на неполных данных малой размерности,
сохраняя стохастическую природу заполнения и избегая детерминированного
смещения, характерного для классических методов [68]. Подробное описание
алгоритма и экспериментов приведено в авторской работе [7].

3.10 Связь с современными архитектурами и направления
развития

Несмотря на использование простой базовой модели – многослойного
персептрона, предложенный подход унарной классификации концептуально
согласуется с современными нейросетевыми архитектурами и может быть обоб­
щён на более сложные классы моделей.

3.10.1 Свёрточные нейронные сети

Свёрточные нейронные сети являются одной из наиболее распростра­
нённых архитектур для обработки изображений и других пространственно
организованных данных, благодаря способности эффективно выделять локаль­
ные признаки и сохранять инвариантность к сдвигам. Нетрудно показать, что
операция свёртки может быть представлена как частный случай полносвязно­
го линейного преобразования. Рассмотрим пример: пусть входное изображение
𝑋, ядро свёртки 𝐾 и результат применения ядра на изображении 𝑌 заданы
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матрицами

𝑋 =

⎡⎢⎣𝑥1 𝑥2 𝑥3

𝑥4 𝑥5 𝑥6

𝑥7 𝑥8 𝑥9

⎤⎥⎦ , 𝐾 =

[︃
𝑘1 𝑘2

𝑘3 𝑘4

]︃
, 𝑌 =

[︃
𝑦1 𝑦2

𝑦3 𝑦4

]︃
,

где

𝑌 =

[︃
𝑘1𝑥1 + 𝑘2𝑥2 + 𝑘3𝑥4 + 𝑘4𝑥5 𝑘1𝑥2 + 𝑘2𝑥3 + 𝑘3𝑥5 + 𝑘4𝑥6

𝑘1𝑥4 + 𝑘2𝑥5 + 𝑘3𝑥7 + 𝑘4𝑥8 𝑘1𝑥5 + 𝑘2𝑥6 + 𝑘3𝑥8 + 𝑘4𝑥9

]︃
.

В векторной форме это преобразование можно записать как

𝑥 = vec(𝑋) ∈ R9, 𝑦 = vec(𝑌 ) ∈ R4, 𝑦 = 𝑊 · 𝑥, 𝑊 ∈ R4×9,

где матрица 𝑊 имеет разреженную структуру, отражающую локальность
взаимодействий и многократное использование одних и тех же весовых коэф­
фициентов ядра свёртки:

𝑊 =

⎡⎢⎢⎣
𝑘1 𝑘2 0 𝑘3 𝑘4 0 0 0 0

0 𝑘1 𝑘2 0 𝑘3 𝑘4 0 0 0

0 0 0 𝑘1 𝑘2 0 𝑘3 𝑘4 0

0 0 0 0 𝑘1 𝑘2 0 𝑘3 𝑘4

⎤⎥⎥⎦ , 𝑥 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1

𝑥2

𝑥3

𝑥4

𝑥5

𝑥6

𝑥7

𝑥8

𝑥9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Этот пример иллюстрирует, что свёрточный слой легко интерпретируется
как полносвязное линейное преобразование с особой структурой матрицы весов.
Это позволяет рассматривать перенос механизма оценки носителя распределе­
ния и процедуры отказа на свёрточные нейросети как естественное направление
развития подхода, обеспечивая его применимость к задачам анализа изображе­
ний и других пространственно организованных данных.

3.10.2 Генеративно-состязательные сети

Можно продемонстрировать связь между предложенным подходом унар­
ной классификации и принципами, лежащими в основе обучения генеративно­
состязательных сетей (GAN), что позволяет подчеркнуть универсальность
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подхода в задачах разделения распределений и оценки доверия к предсказани­
ям. В обоих случаях решается задача выделения эмпирического распределения
реальных данных из шумового распределения.

Пусть 𝑃data – распределение реальных данных, а 𝑃noise – шумовое распреде­
ление. Тогда обучение классификатора сводится к минимизации функционала
вида

ℒ(𝑐) = E𝑥∼𝑃data[ℓ(𝑐(𝑥), 1)] + E𝑥∼𝑃noise[ℓ(𝑐(𝑥), 0)],

где 𝑐 — классификатор, а ℓ – функция потерь бинарной классификации.
По своей форме этот функционал совпадает с обучением дискриминатора в
генеративно-состязательных сетях, за исключением характера фонового распре­
деления: в GAN оно обычно задаётся нормальным распределением, тогда как в
унарной классификации используется равномерное распределение на компакте.

Применение предложенного подхода может способствовать построению
более надёжных дискриминаторов и, как следствие, теоретически улучшать
качество генеративных моделей за счёт использования предсказаний с форма­
лизованной оценкой доверия и контроля области применимости.

3.10.3 Дальнейшее развитие

Указанная связь с современными архитектурами демонстрирует потен­
циал расширения предложенного подхода на более сложные модели, включая
свёрточные, рекуррентные и трансформерные архитектуры. Такое развитие от­
крывает перспективы построения нейросетевых моделей, сочетающих высокую
выразительную способность с формализованной оценкой области применимости
и уровня доверия к предсказаниям, что является ключевым аспектом доверен­
ного искусственного интеллекта.

3.11 Выводы

Представленный в данной главе подход к построению унарных класси­
фикаторов на основе доверенного персептрона позволяет решить ключевую
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проблему бинарной модели – чувствительность к дисбалансу классов. По­
скольку каждый класс моделируется независимо, исключается систематическое
смещение оценок, вызванное дисбалансом в данных, что повышает статистиче­
скую обоснованность и, как следствие, доверие к системе в условиях реальных
задач с неравномерным распределением объектов.

Метод обеспечивает высокую степень интерпретируемости и гибкости:
независимые модели для каждого класса могут использовать различные ар­
хитектуры и параметры, адаптированные под специфику соответствующих
распределений. Векторная оценка апостериорных вероятностей, получаемая
на выходе ансамбля унарных классификаторов, позволяет не только выпол­
нять надёжную многоклассовую классификацию, но и реализовывать сложные
сценарии принятия решений – такие как отказ от классификации при недоста­
точной уверенности или уточняющий запрос в активном обучении.

Таким образом, предложенная схема формирует основу для построе­
ния доверенных классификаторов, которые сочетают в себе устойчивость к
дисбалансу, статистическую строгость подхода и практическую гибкость, необ­
ходимую для использования в ответственных приложениях.
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Глава 4. Применение унарной классификации для генерации
синтетических табличных данных

В контексте доверенного искусственного интеллекта важной задачей
становится обеспечение конфиденциальности данных, используемых при обуче­
нии моделей. Прямая передача обученных моделей в регулируемых областях
(медицина, финансы) может приводить к рискам обратного восстановления
чувствительных обучающих выборок по параметрам модели [69], что ставит
под угрозу приватность исходных данных. Одним из ключевых решений этой
проблемы является генерация синтетических табличных данных, особенно ак­
туальная в условиях ограниченного доступа к реальным данным [70]. Такие
ограничения могут быть обусловлены законодательными мерами по защите
персональных данных [71], коммерческой тайной или просто недостаточным
объёмом исходной выборки.

Синтетические данные находят применение в нескольких критически
важных сценариях доверенного ИИ: в безопасной передаче информации меж­
ду организациями, обучении моделей без доступа к оригиналам, увеличении
объёма обучающих данных [6] и обеспечении воспроизводимости научных
исследований [72]. Основное требование к таким данным — сохранение статисти­
ческих и/или структурных свойств оригинального распределения при гарантии
отсутствия утечки чувствительной информации [73], что исключает прямое ко­
пирование реальных наблюдений.

Для генерации синтетических данных применяются как классические ста­
тистические методы, так и модели, основанные на машинном обучении [74]
– например, вариационные автоэнкодеры (VAE) [75], генеративно-состязатель­
ные сети (GAN) [76], диффузионные модели [77] и др. [78]. Принципиальное
различие между ними заключается в наличии формальных гарантий: статисти­
ческие подходы зачастую обладают свойством состоятельности, обеспечивая
сходимость оценок к истинному распределению, тогда как для нейросетевых
методов такие строгие теоретические обоснования, как правило, отсутствуют,
несмотря на их высокую эмпирическую эффективность.
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4.1 Постановка задачи

Рассмотрим множество наблюдений 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} ∈ [0, 1]𝑑, пред­
ставляющее собой выборку из неизвестного распределения. Цель состоит в
построении синтетической выборки 𝑋̃ = {𝑥̃1, 𝑥̃2, . . . , 𝑥̃𝑚}, которая сохраняет
геометрические и статистические свойства оригинального распределения (ри­
сунок 4.1).

Рисунок 4.1 — Схематичное представление задачи создания синтетических дан­
ных

В отличие от традиционных генеративных подходов, стремящихся к точ­
ному восстановлению многомерной плотности распределения, предлагаемый
метод фокусируется на сохранении геометрической структуры данных и их ста­
тистических характеристик. Это делает его особенно подходящим для задач
синтетического расширения данных в условиях, где важнее сохранение тополо­
гии множества, чем точное соответствие плотности распределения.

4.2 Метод создания синтетических (репродукционных) данных

Для решения задачи генерации синтетических данных, сохраняющих
геометрические и статистические свойства исходной выборки, предлагается ме­
тод, основанный на задаче унарной классификации и описанный в авторской
работе [5]. Процесс включает два последовательных этапа: обучение класси­
фикатора и генерацию синтетической выборки, формальное описание которых
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представлено в алгоритме 1. Данный подход не требует предположений о па­
раметрической форме распределения, адаптивен к сложным зависимостям и
позволяет контролировать баланс между точностью воспроизведения геомет­
рии и разнообразием генерируемых точек.

4.2.1 Обучение классификатора

В рамках предложенного подхода рассматривается фоновое распределе­
ние – равномерное на компакте [0, 1]𝑑. Из него отбирается множество точек
𝐵 = {𝑏1, 𝑏2, . . . , 𝑏𝑛}, равное по мощности множеству 𝑋.

На объединённой выборке 𝑋 ∪𝐵 унарно обучается многослойный персеп­
трон 𝑐𝑛(𝑥) : [0, 1]

𝑑 → [0, 1]. Метки классов задаются следующим образом:{︃
𝑐𝑛(𝑥)→ 1, если 𝑥 ∈ 𝑋,

𝑐𝑛(𝑏)→ 0, если 𝑏 ∈ 𝐵,

Для обучения модели используется функция потерь среднеквадратичной
ошибки (MSE):

𝐿 =
∑︁
𝑥∈𝑋

(1− 𝑐𝑛(𝑥))
2 +

∑︁
𝑏∈𝐵

(0− 𝑐𝑛(𝑏))
2.

Выбор MSE вместо кросс-энтропии обусловлен желанием получить глад­
кую аппроксимацию функции плотности. В отличие от кросс-энтропии, которая
стремится к резкому разделению классов, MSE интерпретируется как ре­
грессионная функция, позволяющая трактовать выход сети как сглаженную
аппроксимацию плотности без необходимости нормировки.

Особенность метода – генерация новых фоновых точек на каждом обу­
чающем шаге (эпохе), а не фиксированное множество 𝐵, заданное в начале.
Это обеспечивает более полное покрытие области и снижает переобучение на
конкретных фоновых примерах.
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4.2.2 Создание репродукционных данных

После завершения обучения классификатора, синтетические данные полу­
чаются путём фильтрации новых фоновых точек. Из равномерного распределе­
ния на [0, 1]𝑑 сэмплируется множество 𝐵̃, и каждая точка 𝑏̃ ∈ 𝐵̃ включается в
итоговую выборку с вероятностью 𝑐𝑛(𝑏̃). То есть:

𝑋̃ = {𝑏̃ ∈ 𝐵̃ | ξ < 𝑐𝑛(𝑏̃)}, ξ ∼ Uniform(0,1).

Такой подход позволяет строить выборку, приближенную к оригинально­
му носителю данных. Это достигается за счёт того, что точки сэмплируются
пропорционально вероятности 𝑃 (𝑌 = 1|𝑋) бинарного классификатора 𝑐𝑛(𝑋),
обученного отличать реальные данные от фонового шума.

Дополнительно возможен вариант репродукции по гистограмме выходов
модели. Для этого после вероятностного прореживания строится гистограмма
значений 𝑐𝑛(𝑥) на обучающей выборке. Далее синтетические точки 𝑋̃ отбира­
ются случайным образом так, чтобы распределение значений 𝑐𝑛(𝑥̃) совпадало
с исходной гистограммой. В случае генерации выборки той же мощности,
что и обучающая, совпадение достигается в абсолютных числах; при построе­
нии выборки произвольного размера обеспечивается совпадение относительных
частот. Такой механизм позволяет контролировать форму распределения, по­
вышает согласованность синтетических данных с оригинальной структурой и
снижает дисперсию репродукционных данных. Особенно полезен данный вари­
ант в задачах, где требуется корректная передача хвостов распределения, так
как он снижает риск их недопредставленности в сгенерированной выборке.

4.3 Экспериментальное исследование

4.3.1 Эксперименты на модельных данных

Для наглядной демонстрации эффективности метода проведены экспери­
менты на модельных наборах данных с известной структурой (рисунок 4.2).
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Метод 1: Создание синтетических табличных данных
Вход : исходная выборка 𝑋 = {𝑥1, . . . , 𝑥𝑛} ∈ [0, 1]𝑑

архитектура модели (𝐿, 𝑘)
мощность синтетической выборки 𝑚

Выход : синтетическая выборка 𝑋̃

Инициализация: создать случайный персептрон 𝑐𝑛(𝑋)

for 𝑒𝑝𝑜𝑐ℎ← 1 to 𝐸 do
Сгенерировать фоновую выборку 𝐵 = {𝑏1, . . . , 𝑏𝑛} ∼ 𝑈 [0,1]𝑑

Обучить 𝑐𝑛(𝑥) на 𝑋 ∪𝐵 с функцией потерь 𝐿:
𝐿 =

∑︀
𝑥∈𝑋(1− 𝑐𝑛(𝑥))

2 +
∑︀

𝑏∈𝐵(0− 𝑐𝑛(𝑏))
2

𝑋̃ ← ∅
while |𝑋̃| < 𝑚 do

Сгенерировать точку 𝑏̃ ∼ 𝑈 [0,1]𝑑

Сгенерировать ξ ∼ 𝑈(0,1)

if ξ < 𝑐𝑛(𝑏̃) then
𝑋̃ ← 𝑋̃ ∪ {𝑏̃}

Вернуть 𝑋̃

Это позволяет объективно оценить способность модели к воспроизведению ста­
тистических свойств. Рассматривались следующие выборки:

– Спираль: двумерная выборка, где точки образуют спираль. Проверя­
ется способность метода к моделированию нелинейной кластеризации.

– Два квадрата: два раздельных кластера квадратной формы. Оцени­
вается сохранение пространственной структуры и разделимости.

– Нормальное распределение: двумерное распределение с известны­
ми параметрами. Проверяется соответствие ковариационной структу­
ры.

– Многомерное нормальное распределение: 10-мерный аналог
предыдущего случая, оценивающий качество генерации в высокораз­
мерном пространстве.

Визуализация результатов (рисунок 4.3) демонстрирует, что сгенери­
рованные данные точно воспроизводят форму, плотность и вариативность
оригинальных данных. В случае многомерного нормального распределения со­
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Рисунок 4.2 — Использованные наборы данных для построения репродукцион­
ных выборок (спираль, два квадрата и гауссиан)

храняется ковариационная структура, хотя наблюдается небольшое увеличение
дисперсии – эффект, обусловленный ростом размерности и разрежённостью
пространства.

а) Спираль б) Два квадрата в) Смесь нормальных
распределений

Рисунок 4.3 — результаты эксперимента с синтетическими данными

4.3.2 Сравнение методов генерации на модельных данных

Для оценки качества предложенного подхода был проведён сравни­
тельный анализ с нейросетевыми генеративными моделями: вариационным
автоэнкодером (VAE) и генеративно-состязательной сетью (GAN). В качестве
тестового примера использовался двумерный спиральный набор данных, позво­
ляющий наглядно проверить способность моделей к воспроизведению сложной
нелинейной структуры распределения.

Вариационный автоэнкодер (VAE) продемонстрировал ограниченную спо­
собность к воспроизведению глобальной геометрической структуры данных



88

(рисунок 4.4). Генерация точек концентрировалась преимущественно в обла­
сти среднего распределения, что приводило к размытию формы спирали.
Такой эффект объясняется свойственной VAE тенденцией усреднять латент­
ное пространство, что особенно заметно при генерации данных с выраженной
многообразной структурой.

Рисунок 4.4 — VAE модель

Генеративно-состязательная сеть (GAN) показала более высокую способ­
ность к сохранению формы спирали по сравнению с VAE (рисунок 4.5). Однако
наблюдается искажение геометрии в виде сужения спиральных ветвей. Модель
стремится усиливать локальные плотности, что приводит к чрезмерному уплот­
нению точек вдоль траектории спирали и потере равномерности распределения.
Этот эффект характерен для GAN в условиях ограниченного объёма обучаю­
щих данных и высокой сложности целевого распределения.

Рисунок 4.5 — GAN модель

Предложенный метод, основанный на унарной классификации, в отличие
от VAE и GAN, продемонстрировал способность воспроизводить как глобаль­
ную форму, так и локальную плотность данных (рисунок 4.6). Предлагаемый
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метод сохраняет равномерность распределения вдоль спирали и при этом избе­
гает чрезмерного сглаживания или концентрации точек, что обеспечивает более
устойчивое воспроизведение сложных структур.

Рисунок 4.6 — Предложенный метод

Таким образом, в задаче генерации структурированных данных низкой
размерности метод на основе унарной классификации демонстрирует более вы­
сокую устойчивость и точность воспроизведения геометрической формы по
сравнению с GAN и VAE.

4.3.3 Эксперименты на реальных данных

Для верификации практической применимости предложенного метода
были проведены эксперименты на реальных наборах данных с последующей
оценкой метрик полезности (utility) и верности (fidelity).

Метрики оценки

– Utility оценивает сохранение полезности данных для последующих за­
дач машинного обучения. В качестве модели выбран градиентный
бустинг на деревьях (XGBoost [79]), демонстрирующий высокую эффек­
тивность классификации табличных данных. Оцениваются значения 𝐹1

мер моделей, обученных на синтетических и оригинальных обучающих
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данных соответственно, и протестированных на одном и том же реаль­
ном тестовом множестве.

– Fidelity измеряет статистическую близость синтетической выборки к
исходной. Для её оценки использовался пакет SDMetrics [80], а имен­
но – усреднённое значение статистики Колмогорова–Смирнова по всем
столбцам. Значение метрики лежит в диапазоне [0, 1], где 1 соответству­
ет полному статистическому совпадению.

Базовые модели сравнения

В качестве базового генеративного метода выбран Conditional Tabular
GAN (CTGAN) [81] – генеративно-состязательная сеть, специально разра­
ботанная для табличных данных, эффективно моделирующая смешанные
распределения. Данный метод является популярным бенчмарком в области
генерации табличных данных, не требующим при этом большого числа вычис­
лительных ресурсов в отличие от современных диффузионных моделей для
табличных данных.

4.3.4 Наборы данных

Тестирование проводилось на пяти наборах данных из репозитория UC
Irvine Machine Learning Repository [65]:

– Iris (𝑑 = 4): 150 образцов, 3 класса, все признаки числовые.
– Tic-Tac-Toe (𝑑 = 9): 958 образцов, категориальные признаки.
– Liver disease (𝑑 = 10): 1700 образцов, смешанные признаки (числовые

и бинарные).
– Wine quality (𝑑 = 11): 4898 образцов, все признаки числовые.
– Heart Disease (𝑑 = 13): 303 образца, смешанные признаки (числовые

и бинарные).
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Результаты

В таблице 3 представлены результаты оценки метрики полезности (utility).
Значения 𝐹1-score демонстрируют, что классификатор, обученный на синтети­
ческих данных, сохраняет конкурентоспособное качество на реальных тестовых
данных, особенно на наборах малой размерности (Iris). С ростом размерности
полезность сгенерированных данных с помощью предложенного метода посте­
пенно снижается, однако на наборе Heart disease качество классификатора,
обученного на синтетических данных, наблюдается заметный прирост качества
по сравнению с обучением на реальных тренировочных данных.

В таблице 4 приведено сравнение статистической верности синтетических
данных, сгенерированных предложенным методом и CTGAN. На низкоразмер­
ном наборе Iris метод демонстрирует лучший результат, что согласуется с его
концепцией сохранения геометрической структуры данных. С увеличением раз­
мерности преимущество CTGAN становится заметным, что объясняется его
более сложной архитектурой, ориентированной на точное моделирование мно­
гомерных распределений.

Таблица 3 — Оценка полезности (utility) методов ге­
нерации синтетических данных

Набор данных 𝑑
𝐹1 мера на тестовом наборе
train Unary CTGAN

Iris 4 0.933 0.973 0.920
tic tac toe 9 0.967 0.957 0.667
Liver disease 10 0.824 0.731 0.682
Wine quality 11 0.797 0.698 0.718
Heart disease 13 0.788 0.838 0.727

Таблица 4 — Оценка верности (fidelity) ме­
тодов генерации синтетических данных
Набор данных 𝑑 Unary CTGAN
Iris 4 0.901 0.880
tic tac toe 9 0.858 0.935
Liver disease 10 0.875 0.922
Wine quality 11 0.857 0.887
Heart disease 13 0.852 0.882
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Выводы по экспериментам

– Предложенный метод демонстрирует высокую utility на данных малой
и средней размерности (𝑑 ⩽ 13), что подтверждает его способность
сохранять репрезентативность данных для последующих задач класси­
фикации.

– В области fidelity наблюдается ожидаемый эффект “проклятия раз­
мерности”: с ростом 𝑑 точность статистического воспроизведения сни­
жается. Однако на низкоразмерных данных (Iris) метод превосходит
CTGAN, что можно объяснить его фокусом на сохранении геометриче­
ской структуры (support) распределения, а не плотности.

– Полученные результаты определяют область эффективного примене­
ния метода – генерация синтетических данных для задач, где кри­
тически важна сохранность геометрии исходного множества, а не
точное воспроизведение многомерной плотности. Для задач, требую­
щих высокой статистической точности на данных высокой размерности,
предпочтительнее использование более сложных моделей, таких как
CTGAN или диффузионные модели.

4.4 Выводы

Предложенный метод построения репродукционных выборок с помощью
метода унарной классификации представляет собой эффективный подход для
задач генерации синтетических данных с акцентом на сохранение геометриче­
ской структуры исходного распределения. Ключевыми преимуществами метода
являются его концептуальная простота, теоретическая интерпретируемость и
способность точно воспроизводить топологию низкоразмерных многообразий
данных.

Полученные результаты определяют чёткую область эффективного при­
менения метода – генерация синтетических данных малой размерности, где его
производительность сопоставима с более сложными генеративными моделями.
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При этом метод демонстрирует заметное преимущество в вычислительной эф­
фективности и устойчивости при работе с ограниченными выборками.

Основное ограничение метода связано с эффектом «проклятия раз­
мерности»: с увеличением количества признаков точность воспроизведения
статистических характеристик закономерно снижается, что делает его менее
подходящим для задач, требующих точного моделирования высокоразмерных
плотностей распределений. В таких сценариях более уместно применение спе­
циализированных моделей, таких как CTGAN или диффузионные модели.
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Глава 5. Интеллектуальная система машинного обучения для
визуализации и исследования методов классификации

Для формулирования исследовательских гипотез и последующей их экс­
периментальной проверки разработана интеллектуальная система машинного
обучения, отвечающая совокупности требований:

1. Автономность и кроссплатформенность.Работоспособность на
устройствах без графического процессора и доступа к сети, не тре­
бующая установки дополнительного программного обеспечения, для
обеспечения воспроизводимости в изолированных средах

2. Интерактивная визуализация. Возможность визуализации обуча­
ющих данных, аппроксимации носителя распределения, архитектуры
модели, её выходных значений и разбиения компакта, а также динами­
ки метрик обучения без многократной перерисовки интерфейса.

3. Динамическая модификация параметров. Возможность динами­
ческой модификации используемых данных и архитектуры сети в
реальном времени без прерывания процесса обучения.

4. Численная корректность. Численная эквивалентность вычисли­
тельного ядра системы эталонной реализации на платформе PyTorch.

5. Реализация разработанных методов (модифицированная бинар­
ная классификация, унарная классификация, генерация синтетических
данных на основе метода унарной классификации, объясняющее дерево
eXBTree) и инструментов для проведения экспериментов с ними.

В данной главе описывается архитектура и программная реализация си­
стемы, разработанной в соответствии с приведёнными требованиями.

5.1 Общая характеристика интеллектуальной системы машинного
обучения

Разработанная система представляет собой автономное клиентское WEB­
приложение, реализованное на языке JavaScript [82], не требующее установки,
интернет-соединения или использования графического ускорителя, что обеспе­
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чивает его широкую доступность и воспроизводимость экспериментов, а также
удовлетворяет требованию автономности и кроссплатформенности.

Интеллектуальная система предназначена для комплексной демонстра­
ции, отладки и тестирования алгоритмов, описанных в теоретических разделах
настоящей работы. Предоставляется интуитивно понятный графический интер­
фейс с возможностью гибкой настройки параметров моделей, наборов данных и
условий обучения. Благодаря использованию визуальных компонентов пользо­
ватель может в интерактивном режиме наблюдать за процессом формирования
разделяющих поверхностей, анализировать выходы моделей, а также проводить
тестирование работы классификаторов.

Разработка велась с учётом необходимости масштабируемости архитек­
туры: структура системы разделена на независимые функциональные блоки,
что обеспечивает возможность расширения и модификации без необходимости
переписывания всего кода. Интерфейс системы логически организован по вклад­
кам, каждая из которых отвечает за определённую группу задач: генерация и
загрузка данных, обучение модели, проведение экспериментов, визуализация и
анализ результатов.

На момент завершения работы интеллектуальная система машинного обу­
чения включает в себя следующие ключевые функциональные возможности:

– настройка параметров архитектуры многослойного персептрона, вклю­
чая размеры и количество слоёв, выбор функции активации, установку
порогов доверия;

– управление параметрами обучения (функция потерь, оптимизатор, ре­
гуляризация, и т.д.);

– пошаговая визуализация процесса обучения, включая изменение выхо­
дов модели, метрик и формирование ячеек;

– реализация как классических методов бинарной классификации, так и
модифицированного и унарного методов;

– визуализация, построение и загрузка обучающих и тестовых множеств;
– проведение экспериментальных исследований по созданию синтетиче­

ских данных и анализ объясняющего двоичного дерева eXBTree.
Таким образом, система реализует весь цикл исследования: от создания

обучающего множества до визуализации результатов и анализа поведения моде­
ли в различных условиях. Её применение позволяет не только демонстрировать
основные методы, описанные в главах 1–3, но и проводить дополнительный
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количественный и качественный анализ, направленный на верификацию теоре­
тических положений.

5.2 Архитектура системы

5.2.1 Модульная организация и паттерн проектирования
EventEmitter

Архитектура системы построена на модульном принципе, где каждый
компонент имеет чётко определенную ответственность и интерфейс взаимодей­
ствия. Основные модули включают:

– Вычислительное ядро (model) – реализация нейросетевых алгоритмов;
– Управление данными (data) – генерация, загрузка, хранение и обработ­

ка наборов данных;
– Система визуализации (view) – отрисовка всех графических компонен­

тов;
– Модули экспериментов (experiments) – проведение исследований раз­

работанных методов.
Для организации взаимодействия между модулями применён паттерн

Observer, реализующий событийно-ориентированную архитектуру (рис. 5.1).
Каждый модуль, требующий реакции на изменения состояния, наследуется от
базового класса EventEmitter и может генерировать события, на которые под­
писываются другие компоненты (листинг 5.1).

Рисунок 5.1 — Архитектура на основе EventEmitter

Листинг 5.1: Пример использования EventEmitter для реакции на изменения
this.model.on("change", () => this.HandleChangeModel ())
this.dataset.on("change", (data) => this.HandleChangeData(data))
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Этот подход обеспечивает дифференциальное обновление интерфейса:
при изменении набора данных перерисовываются только точки на графике,
а при обновлении весов модели – только её визуализация, что минимизирует
накладные расходы на рендеринг по сравнению с полной перерисовкой всего
интерфейса с некоторым интервалом.

5.2.2 Вычислительное ядро и интерфейс

Система имеет чёткое разделение между логикой вычислений и пользо­
вательским представлением:

– Класс Visualizer – центральный компонент, управляющий всеми вы­
числительными процессами. Может использоваться программно без
графического интерфейса в виде независимой библиотеки.

– Класс Playground – адаптер, связывающий HTML-компоненты с ме­
тодами класса Visualizer. Такое разделение обеспечивает лёгкую
расширяемость и возможность интеграции системы в другие приложе­
ния.

5.2.3 Система событий для минимизации перерисовки интерфейса

Механизм событий позволяет компонентам системы реагировать на из­
менения состояния только тех элементов, от которых они зависят. Каждый
компонент может генерировать события при изменении своего внутреннего со­
стояния и подписываться на события других компонентов, которые влияют на
его отображение или вычисления.

Ключевые типы событий

Система использует следующие основные категории событий:
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– change – общее событие изменения состояния (используется моделью,
наборами данных, метриками);

– change-architecture – изменение архитектуры нейронной сети;
– change-prediction – обновление предсказаний модели для конкретно­

го набора данных;
– change-dimension – изменение размерности входных данных;
– change-view – изменение области просмотра визуализации;
– click – пользовательское взаимодействие с элементами интерфейса с

помощью мыши.

Динамика взаимодействия через события

Взаимодействие компонентов организовано по принципу публикации-под­
писки:

– При изменении внутреннего состояния компонент генерирует соответ­
ствующее событие.

– Все компоненты, подписанные на это событие, получают уведомление
и выполняют необходимые действия.

– Эти действия могут включать обновление собственного состояния и ге­
нерацию новых событий, что приводит к каскадному распространению
изменений по системе.

Пример последовательности событий

Типичный сценарий взаимодействия после шага обучения модели пред­
ставлен на рис. 5.2 и включает следующие этапы:

1. Менеджер модели изменяет веса сети и генерирует событие change.
2. Визуализатор модели, подписанный на это событие, обновляет отобра­

жение архитектуры и выходной поверхности.
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Рисунок 5.2 — Последовательность событий после шага обучения модели

3. Сам менеджер модели запускает пересчёт предсказаний для
всех активных наборов данных, после чего генерируется событие
change-prediction.

4. Модуль метрик, подписанный на change-prediction, пересчитывает
значения ошибок и точности, затем генерирует событие "change".

5. График метрик, подписанный на "change" от модуля метрик, обновля­
ет кривые обучения.

При этом независимые компоненты (таблица данных, координатная сетка
и др.) не получают уведомлений и не перерисовываются, если они не зависят от
изменённых параметров. Такая избирательная обработка событий минимизиру­
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ет избыточные вычисления и обеспечивает высокую отзывчивость интерфейса
даже при работе с большими объёмами данных.

5.3 Реализация вычислительного ядра машинного обучения

5.3.1 Основные компоненты нейросетевой подсистемы

Вычислительное ядро реализует полный набор компонентов для работы
с нейросетевыми моделями (рис. 5.3):

– Полносвязный слой (FullyConnectedLayer) – поддерживает различные
функции активации (ReLU, LeakyReLU, Abs, линейная), механизм от­
ключения нейронов, методы прямого и обратного распространения.

– Модель нейронной сети (NeuralNetwork) – содержит список слоёв и
методы обучения, предсказания и сериализации. Поддерживает дина­
мическое изменение архитектуры во время работы.

– Функции потерь (Loss) – реализованы MSE, MAE, Huber [83] и
LogCosh [84].

– Оптимизаторы [85] градиентного спуска (Optimizer) – включают SGD,
Momentum SGD, Adam, Adamax, Adadelta [86], Adagrad, RMSprop с под­
держкой L1/L2 регуляризации.

5.3.2 Оптимизация работы с памятью

Для минимизации накладных расходов на выделение памяти применены
следующие стратегии:

– Типизированные массивы (Float64Array, Int32Array) – все вычисле­
ния выполняются над типизированными массивами [87], что обеспечи­
вает непрерывное расположение данных в памяти и ускоряет доступ к
элементам.
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Рисунок 5.3 — Архитектура вычислительного ядра

– Преаллокация буферов – все рабочие массивы (выходы, активации,
градиенты) выделяются один раз при создании слоя с учётом макси­
мального размера пакета (см. листинг 5.2).

– Стратегия перевыделения – при изменении размеров модели масси­
вы расширяются с сохранением существующих данных, но никогда не
уменьшаются.

Листинг 5.2: Преаллокация буферов в полносвязном слое
class FullyConnectedLayer {

constructor(inputs , outputs , activation , MAX_BATCH_SIZE) {
this.value = new Float64Array(outputs * MAX_BATCH_SIZE)
this.output = new Float64Array(outputs * MAX_BATCH_SIZE)

5 this.df = new Float64Array(outputs * MAX_BATCH_SIZE)
this.dx = new Float64Array(inputs * MAX_BATCH_SIZE)
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// ...
}

}

5.3.3 Разворачивание циклов для ускорения вычислений на CPU

Исполнение кода в однопоточной среде JavaScript накладывает фун­
даментальное ограничение: все вычисления выполняются последовательно в
рамках одного потока. Для преодоления этого ограничения необходимо мак­
симально эффективно использовать аппаратные возможности современного
центрального процессора. Ключевой особенностью CPU является конвейерная
архитектура, где выполнение каждой машинной инструкции разбито на по­
следовательные стадии: выборку (fetch), декодирование (decode), исполнение
(execute) и запись результата (write).

Зачастую в потоке команд следующая инструкция зависит от результата,
который должна записать предыдущая (”зависимость «чтение после записи”).
В этом случае процессор вынужден вводить в конвейер пустые такты и про­
стаивать в ожидании завершения нужной стадии, что приводит к снижению
производительности.

Однако, если в потоке исполнения появляются независимые инструкции,
не связанные подобными зависимостями, ситуация меняется. Стадии конвей­
ера могут быть заполнены непрерывно: пока одна независимая инструкция
исполняется, следующая может декодироваться, а третья – выбираться. Это
создаёт эффект параллельного исполнения на уровне инструкций (Instruction­
Level Parallelism, ILP) внутри одного потока, позволяя процессору выполнять
полезную работу на каждом такте и тем самым существенно ускоряя вычис­
ления (рисунок 5.4).

Для генерации таких независимых инструкций в вычислительно на­
груженных участках кода применяется метод разворачивания циклов (loop
unrolling), который является ключевым аспектом оптимизации производи­
тельности в разработанной системе [88]. Наиболее частой и критичной с
точки зрения производительности операцией в ядре нейронной сети являет­
ся матричное умножение, лежащее в основе как прямого, так и обратного
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Рисунок 5.4 — Визуализация эффекта параллелизма на уровне инструкций
(ILP)

распространения сигнала. В стандартной реализации операции прямого рас­
пространения имеют вид, представленный в листинге 5.3. В оптимизированной
версии (листинг 5.4) цикл разворачивается на 4 итерации, что позволяет интер­
претатору JavaScript лучше использовать конвейер процессора и регистры за
счёт парралелизма на уровне инструкций.

Листинг 5.3: Базовая реализация прямого распространения
for (let i = 0; i < outputs; i++) {

let value = this.b[i]
for (let j = 0; j < inputs; j++)

value += this.w[i * inputs + j] * x[batch * inputs + j]
5 this.activate(index , value)
}

Листинг 5.4: Оптимизированная реализация прямого распространения
const end = (this.outputs >> 2) << 2
for (let i = 0; i < end; i += 4) {

let value1 = this.b[i]
let value2 = this.b[i + 1]

5 let value3 = this.b[i + 2]
let value4 = this.b[i + 3]
let wOffset = i * this.inputs

for (let j = 0; j < this.inputs; j++) {
10 const xj = x[j]

const wIdx = wOffset + j
value1 += this.w[wIdx] * xj
value2 += this.w[wIdx + this.inputs] * xj
value3 += this.w[wIdx + this.inputs * 2] * xj

15 value4 += this.w[wIdx + this.inputs * 3] * xj
}
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// Активация для всех четырëх нейронов
}

Аналогичное разворачивание применено для операций обратного распро­
странения ошибки и вычисления градиентов по входному вектору. Оптималь­
ный коэффициент разворачивания (4 операции) был определён эмпирически:
разворачивание на 2 итерации не обеспечивало достаточной степени парал­
лелизма для эффективной загрузки конвейера процессора, в то время как
увеличение коэффициента до 8 или 16 итераций не приводило к статистиче­
ски значимому приросту производительности по сравнению с разворачиванием
на 4 итерации.

5.3.4 Цикл обучения в системе

В системе реализован метод, выполняющий одну полную эпоху обуче­
ния на предоставленном обучающем наборе данных. Алгоритм его работы
заключается в последовательной мини-пакетной обработке данных: выборка
разбивается на батчи, для каждого из которых выполняются прямой про­
ход модели, расчёт функции потерь, обратное распространение ошибки и шаг
оптимизатора для обновления весовых коэффициентов. После завершения об­
работки всех пакетов генерируются события изменения модели, инициирующие
каскадное обновление всех зависимых визуализаций и метрик.

Управление процессом обучения осуществляется через цикл анимации, по­
строенный на основе функции requestAnimationFrame. На каждой итерации
цикла проверяется состояние флага isTraining. Если обучение активно, вы­
зывается метод выполнения эпохи TrainStep, что обеспечивает непрерывное
итеративное обучение до явной остановки пользователем. Данный подход так­
же предоставляет возможность пошагового режима, когда пользователь может
самостоятельно инициировать каждый шаг обучения через единичный вызов
TrainStep.

Ключевым преимуществом реализации является её высокая скорость вы­
полнения одной эпохи, обусловленная малой размерностью решаемых в системе
задач. Это позволяет в реальном времени изменять используемые данные и
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архитектуру модели (количество слоёв, нейронов), не прерывая процесс обуче­
ния. Следующая же итерация цикла обучения автоматически использует уже
обновлённую конфигурацию, обеспечивая немедленную реакцию системы на
модификации.

Использование цикла анимации создаёт эффект параллельного выполне­
ния вычислений, сохраняя при этом отзывчивость интерфейса для интерак­
тивных операций, что удовлетворяет требованию динамической модификации
параметров.

5.3.5 Верификация корректности: модульные тесты и сравнение с
PyTorch

Для всесторонней проверки корректности реализации оптимизированных
алгоритмов была разработана комплексная система тестирования, включающая
модульное тестирование и сравнительный анализ с эталонной реализацией на
PyTorch.

Модульное тестирование оптимизированных версий

Для каждого оптимизированного метода (с развёрнутыми циклами) про­
водилось сравнение с его базовой версией. На случайно сгенерированных
входных данных выполнялись обе реализации, после чего вычислялась мак­
симальная абсолютная разность результатов. Во всех случаях различие не
превышало 1 × 10−16, что соответствует машинной точности операций с
плавающей запятой двойной точности и подтверждает идентичность логики
оптимизированных и базовых алгоритмов.



106

Сравнительное тестирование с PyTorch

Для удовлетворения требованию численной корректности проведено срав­
нительное тестирование всех компонентов машинного обучения с эталонной
реализацией на PyTorch (версия 1.16). Тестирование выполнялось на детерми­
нированных наборах данных, обеспечивающих воспроизводимость результатов:

– Функции потерь: протестированы MSE, MAE, Huber и LogCosh loss
на детерминированных парах «предсказание–цель», с проверкой как
значений функций, так и их градиентов.

– Оптимизаторы: для каждого оптимизатора (SGD, MomentumSGD,
Adam, Adamax, Adadelta, Adagrad, RMSprop) проверялись значения
вычисленных градиентов после каждого шага оптимизации функции
Huber в течение 50 итераций. Сравнение проводилось с соответству­
ющими оптимизаторами PyTorch с идентичными гиперпараметрами
(регуляризация, скорость сходимости и специфические для оптимиза­
торов).

– Полносвязная сеть: проведено комплексное тестирование полного
цикла обучения для сетей различной глубины – двухслойной (3-5-1),
трёхслойной (3-7-9-1) и пятислойной (3-6-12-24-1). Каждая сеть иници­
ализировалась заранее определёнными весами, обучение выполнялось
на фиксированном наборе из 12 элементов (размер пакета 4) в течение
100 эпох. Контрольные значения функции потерь, выходов модели и
весовых коэффициентов сравнивались с PyTorch после 1-й, 10-й, 42-й и
100-й эпохами.

Во всех тестах максимальная разность между результатами реализован­
ной системы и PyTorch не превышала 1 × 10−15. Такой уровень погрешности
соответствует машинной точности операций с числами двойной точности и
подтверждает корректность реализации всех численных алгоритмов, включая
вычисление градиентов и обновление весов.

Разработанный набор детерминированных тестов обеспечивает полное
покрытие модуля машинного обучения и позволяет проводить регрессионное
тестирование при дальнейшем развитии системы.
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5.4 Система визуализации и интерактивности

Для удовлетворения требования интерактивной визуализации были со­
зданы независимые компоненты, использующие механизм событий для диффе­
ренцированного обновления интерфейса, позволяющего перерисовывать только
необходимые части графического интерфейса.

5.4.1 Архитектура подсистемы визуализации

Визуализация построена на принципе многослойного рендеринга, где каж­
дый слой отвечает за отрисовку определенного типа информации:

– Слой сетки (GridLayer) – координатная сетка и оси (рисунок 5.5 а)
– Слой данных (DataLayer) – отрисовка точек наборов данных через SVG

с цветовой кодировкой классов(рисунок 5.5 б);
– Слой модели (ModelOutputLayer) – визуализация выхода нейросети че­

рез HTML5 Canvas(рисунок 5.5 в);
– Слой ячеек (CellsPlot) – границы иерархического разбиения компакта

персептроном на ячейки(рисунок 5.5 г).

а) Слой сетки б) Слой данных в) Слой модели г) Слой ячеек
Рисунок 5.5 — Визуализация слоёв отрисовки

Все слои синхронизированы через общий объект ViewBox, обеспечиваю­
щий преобразование координат и обработку масштабирования/перемещения на
координатной плоскости.
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5.4.2 Алгоритмы отрисовки многомерных данных

Для визуализации данных произвольной размерности 𝑑 > 2 реализован
механизм проекций на выбранные координаты. Пользователь выбирает оси 𝑥𝑖 и
𝑥𝑗 для отображения, остальные координаты 𝑥𝑘, 𝑘 ̸= 𝑖,𝑗 фиксируются текущим
значением точки в пространстве, которая задаётся пользователем.

Это позволяет исследовать поведение модели в произвольных двумерных
сечениях многомерного пространства.

5.4.3 Визуализация структуры нейросети и её выхода

Для отображения выхода модели реализованы несколько режимов (ри­
сунок 5.6):

– Линейный – плавный градиент от синего (-1) через белый (0) к красному
(+1);

– Дискретный (2, 4, 10 уровней) – квантизация выхода для анализа поро­
говых эффектов;

– 3D – отображение в виде 3D поверхности.

а) Линейный
режим

б) Дискретный
режим

в) Дискретный
режим на 10

уровней

г) 3D режим

Рисунок 5.6 — Визуализация выхода модели

Визуализация архитектуры сети (ModelArchitectureLayer) отображает (ри­
сунок 5.7):

– Веса связей (цветом и толщиной линии);
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– Исследуемый нейрон (использует зелёную заливку в отличие от осталь­
ных серых).

– Отключенные нейроны (используют чёрную заливку).

Рисунок 5.7 — Визуализация архитектуры нейросети (исследуется нейрон 𝐵4,
нейроны 𝐴6 и 𝐴9 отключены

5.5 Анализ производительности и системные характеристики

5.5.1 Сравнение производительности оптимизированных и базовых
версий

Для количественной оценки эффективности применённых оптимизаций
проведено сравнительное тестирование производительности базовой и опти­
мизированной (с развёрнутыми циклами) версий критических компонентов
системы. Тестирование выполнено для различных архитектур моделей и разме­
ров пакетов данных, что позволяет оценить влияние оптимизаций в различных
сценариях использования.
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Методология тестирования

Для каждого теста предварительно выполнялось 100 итераций прогрева
для стабилизации производительности JIT-компилятора JavaScript, затем 1000
итераций на заранее сгенерированных случайных данных для точного заме­
ра времени выполнения. Тестирование проводилось для различных размеров
пакетов (4, 16, 32 элемента) и различных конфигураций слоёв и моделей. Те­
стирование производилось в браузере Google Chrome 136.

Тестирование полносвязного слоя

Протестированы операции прямого и обратного распространения для пол­
носвязных слоёв различной размерности:

– Прямое распространение (forward);
– Обратное распространение без вычисления градиента входа (backward;
– Обратное распространение с вычислением градиента входа

(backward(dx)).

Таблица 5 — Производительность полносвязного слоя
Параметры Операция Ускорение оптимизированной версии

слоя 𝑏𝑠 = 4 𝑏𝑠 = 16 𝑏𝑠 = 32

2× 10
forward 1.74 1.35 1.37

backward 2.34 1.25 1.96
backward(dx) 1.66 1.63 1.20

10× 10
forward 1.24 1.10 1.32

backward 2.45 2.23 1.34
backward(dx) 1.79 1.25 1.59

10× 100
forward 1.99 1.52 1.83

backward 1.48 2.85 1.85
backward(dx) 1.86 1.95 1.76

100× 10
forward 1.52 1.31 1.13

backward 1.23 1.46 1.39
backward(dx) 1.64 1.97 1.42
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Конфигурации слоёв включали комбинации входных и выходных раз­
мерностей (2x10, 10x10, 10x100, 100x10). Результаты значений ускорения для
различных размерностей и размеров пакетов представлены в таблице 5.

Тестирование полносвязной сети

Протестированы комплексные операции для полносвязных сетей различ­
ной архитектуры:

– Предсказание (predict);
– Прямое распространение по всей сети (forward);
– Обратное распространение (backward);
– Полный цикл обучения (train_on_batch).

Таблица 6 — Производительность полносвязной сети
Параметры Операция Ускорение оптимизированной версии

сети 𝑏𝑠 = 4 𝑏𝑠 = 16 𝑏𝑠 = 32

2− 10

predict 1.09 2.87 1.27
forward 1.12 2.23 1.74

backward 1.36 1.52 4.07
train on batch 2.10 0.74 1.54

10− 10− 1

predict 1.77 1.42 1.03
forward 1.05 1.02 1.08

backward 1.41 1.94 1.23
train on batch 1.01 1.46 1.32

25− 25− 25− 25− 1

predict 1.51 1.23 2.03
forward 1.36 1.56 1.05

backward 2.53 2.07 1.82
train on batch 1.38 1.69 1.75

Архитектуры сетей включали 1-5 слоёв с различным количеством нейро­
нов. Результаты значений ускорения представлены в таблице 6.
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Анализ результатов

Анализ результатов показывает, что применение развёртывания циклов
позволяет достичь ускорения до 2.8 раз в зависимости от конкретной операции,
архитектуры модели и размера пакета. Наибольший выигрыш в производитель­
ности наблюдается для операций обратного распространения с вычислением
градиентов – наиболее вычислительно интенсивных частей алгоритма обуче­
ния. Для операций прямого распространения ускорение составляет 1.1–2 раза,
что также существенно для интерактивной работы системы.

5.5.2 Кроссплатформенность

Разработанная система реализована как веб-приложение, что обеспечива­
ет полную кроссплатформенность без необходимости установки дополнитель­
ного программного обеспецения. Для работы достаточно любого современного
браузера (Chrome 80+, Firefox 75+, Safari 14+, Edge 80+) с поддержкой
JavaScript ES2020, HTML5 [89], Canvas [90] и SVG [91]. Это позволяет си­
стеме функционировать идентично на всех основных операционных системах
(Windows, Linux, macOS) и архитектурах процессоров (x86-64, ARM), а также
на мобильных платформах (iOS, Android).

Для адаптации к мобильным устройствам реализованы адаптивный
CSS3-интерфейс [92], обработка жестов (масштабирование, перемещение) и от­
ложенный рендеринг ресурсоёмких графических компонентов. Использование
стандартизированных браузерных API гарантирует согласованное поведение
системы независимо от платформы, обеспечивая доступность инструмента ви­
зуализации и исследования персептронов на любом устройстве с веб-браузером.
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5.5.3 Масштабируемость и практические ограничения

Реализованная система спроектирована таким образом, что формальных
ограничений на размерность данных, количество нейронов или объём обучаю­
щей выборки не существует – они определяются исключительно доступными
ресурсами оперативной памяти и вычислительными возможностями целевой
платформы. Однако для типичного компьютера с 16 ГБ оперативной памяти
и современным процессором (например, Intel Core i7 или аналог) определены
следующие эмпирические границы комфортного использования системы:

– Размер модели: система эффективно работает с полносвязными се­
тями, содержащими до 200 нейронов суммарно по всем слоям. При
этом сохраняется возможность интерактивного изменения архитекту­
ры, визуализации весов и отрисовки выходной поверхности в реальном
времени.

– Объём данных: в 20-мерном пространстве система позволяет за­
гружать и визуализировать до 106 точек (обучающих и тестовых)
без существенных задержек при масштабировании и перемещении.
Основным узким местом становится не вычисление предсказаний (оп­
тимизированное развёрткой циклов), а отрисовка большого числа
SVG-элементов.

– Параметры обучения: максимальный размер пакета (batch size) за­
фиксирован на уровне 27 = 128. Это значение выбрано исходя из
компромисса между эффективностью градиентного спуска и объёмом
заранее выделенной памяти под промежуточные буферы (активации и
градиенты). Увеличение этого параметра линейно повышает потребле­
ние памяти, но не всегда приводит к ускорению обучения из-за роста
времени обновления весов.

5.6 Примеры использования

Интеллектуальная система машинного обучения разработана с целью под­
держки полного цикла исследования поведения нейросетевых моделей, включая
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этапы создания данных, обучения классификатора, анализа и интерпретации
результатов. Ниже приведены ключевые сценарии использования системы, ил­
люстрирующие её функциональные возможности.

5.6.1 Бинарная классификация

Для проверки способности модели к нелинейной аппроксимации границ
принятия решений решается задача классификации двух переплетённых спи­
ралей (рисунок 5.8). В системе предусмотрена генерация соответствующего
набора данных и обучение модели с возможностью пошагового отображения
изменения решения по мере выполнения эпохи градиентного спуска. Интеллек­
туальная система машинного обучения позволяет наблюдать как локальные
ошибки, так и итоговую зону классификации, что особенно полезно при выборе
архитектуры сети и прочих гиперпараметров.

Рисунок 5.8 — Пример выполнения бинарной классификации
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5.6.2 Унарная классификация

Режим унарной классификации допускает обучение модели только по по­
ложительным примерам (рисунок 5.9). В качестве примера используется одна
из спиралей из предыдущего эксперимента. Пользователь может задать уро­
вень порога β, визуализировать полученную область принятия положительного
класса, а также проследить, каким образом меняется зона отказа при варьиро­
вании параметров. Данный сценарий позволяет исследовать свойство доверия,
характерное для унарных моделей.

Рисунок 5.9 — Пример выполнения унарной классификации

5.6.3 Создание синтетических данных

Одной из оригинальных функций системы является реализация метода
синтетической генерации данных на основе предложенного в рамках диссерта­
ционного исследования метода, используя предварительно обученную унарную
модель (рисунок 5.10).
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Рисунок 5.10 — Пример построения синтетических данных

Пользователь может интерактивно варьировать пороговое значение,
наблюдать за статистическими характеристиками (средним, минимумом, мак­
симумом, среднеквадратичным отклонением и ковариационной матрицей)
отобранных объектов, а также визуализировать геометрию полученного мно­
жества в виде 2D проекций.

5.6.4 Построение объясняющего дерева решений

Одним из компонентов системы является модуль построения объясняю­
щего дерева решений, предназначенного для статистической интерпретации
решения обученного персептрона (рисунок 5.11). Пользователь может выбрать
интересующую ячейку и подробно изучить как её содержимое, так и геометрию
пространства. Это позволяет проводить интерпретацию решения в выбранной
области и служит средством повышения доверия к результатам классификации.
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Рисунок 5.11 — Пример работы с объясняющим деревом

5.7 Выводы

Разработанная в рамках диссертационного исследования интеллектуаль­
ная система машинного обучения представляет собой законченное программное
решение, которое полностью удовлетворяет всем сформулированным требова­
ниям.

Система реализует разработанные методы – модифицированную бинар­
ную классификацию, унарную классификацию, генерацию синтетических дан­
ных на её основе и интерпретирующую модель eXBTree – и предоставляет
инструментарий для их экспериментального исследования.

Обеспечена автономность и кроссплатформенность: система работает как
автономное веб-приложение, не требующее установки дополнительного про­
граммного обеспечения, специальных драйверов, графического процессора или
доступа к сети. Это гарантирует её работоспособность и воспроизводимость
результатов на любом устройстве, включая компьютеры с ограниченными ре­
сурсами.

Важной особенностью является интерактивная визуализация в реальном
времени. Система отображает используемые данные, аппроксимацию носителя
распределения, архитектуру модели, выходные активации нейронов, формируе­
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мое разбиение пространства решений и динамику метрик обучения, обеспечивая
целостное восприятие процесса без артефактов производительности.

Ключевым достижением стала поддержка динамической модификации
параметров. Пользователь может в реальном времени изменять параметры дан­
ных (дисбаланс классов, уровень шума) и архитектуру сети (количество слоёв,
нейронов, функции активации) без прерывания процесса обучения. Любое из­
менение немедленно отражается на всех визуализациях, обеспечивая прямую
связь между конфигурацией модели и её поведением.

Обеспечена численная корректность вычислительного ядра. Операции
прямого и обратного распространения, а также расчёт градиентов функцио­
нально эквивалентны эталонной реализации на PyTorch в пределах машинной
точности, что подтверждается разработанным пакетом модульных тестов.

Для достижения высокой производительности в условиях однопоточного
JavaScript применена оптимизация разворачивания циклов, что за счёт парал­
лелизма на уровне инструкций (ILP) обеспечило ускорение вычислений на CPU
в 1.5–2.5 раза по сравнению с базовой реализацией. Система опубликована как
проект с открытым исходным кодом на платформе GitHub, что способствует
верификации, повторному использованию и дальнейшему развитию.

Таким образом, система успешно интегрирует предложенные методы
в единую интерактивную исследовательскую платформу. Она служит ин­
струментом не только для экспериментального подтверждения теоретических
результатов диссертации, но и для интерактивного анализа, визуализации и
отладки доверенных персептронных моделей в средах с ограниченными вычис­
лительными ресурсами.
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Заключение

В представленной работе решена задача построения статистически обос­
нованного классификатора для пространств малой размерности в рамках
парадигмы доверенного искусственного интеллекта. Исследование направлено
на преодоление разрыва между эмпирическими нейросетевыми методами и фор­
мальным аппаратом математической статистики.

Основные результаты работы заключаются в следующем:
1. Разработана теоретическая база непараметрического оценивания в

условиях дисбаланса классов и малой размерности. Сформулированы
и доказаны теоремы, обосновывающие асимптотическую связь между
нейросетевой и гистограммной оценками апостериорной вероятности.
Данный результат обеспечивает формальное статистическое обоснова­
ние для предложенного подхода.

2. Разработан метод построения статистически обоснованного объяснимо­
го байесовского классификатора на основе многослойного персептрона
и дерева решений. Метод обеспечивает оценку апостериорных вероятно­
стей с теоретическими гарантиями и формирование интерпретируемых
правил классификации.

3. Разработан метод построения унарного классификатора, устойчиво­
го к дисбалансу классов и позволяющего генерировать синтетические
данные, сохраняющие геометрические и статистические свойства исход­
ного распределения.

4. Создана интеллектуальная система машинного обучения, реализующая
предложенные методы и обеспечивающая решение задач классифи­
кации данных малой размерности в условиях дисбаланса классов и
высокой неопределённости вне носителя распределения.

Результаты экспериментального исследования подтвердили устойчивость
классификатора к дисбалансу классов, корректность работы в условиях вы­
хода за носитель распределения и адекватность генерируемых синтетических
данных.

В работе предложен формально обоснованный подход к созданию дове­
ренных классификаторов, сочетающий выразительность нейросетевых моделей
со строгостью статистических методов.
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Приложение Б

Доказательства теорем

Б.1 Доказательство теорем. 1

Доказательство опубликовано в работе [3] совместно с Лукьяновым К.С.,
Яськовым П.А., Коваленко А.П. и Турдаковым Д.Ю.. Авторство доказатель­
ства теоремы принадлежит Яськову П. А..

Как показано в п. 2.1 решение задачи 2.4 существует и совпадает с услов­
ным математическим ожиданием

𝑔α(𝑥) = 𝐸α(𝑌 |𝑋 = 𝑥), 𝑥 ∈ [0, 1]𝑑,

которое определено однозначно λα-п. н., иначе говоря, одновременно 𝑃𝑋-п. н.
и λ-п. н.

Чтобы вывести явную формулу для 𝑔α, заметим следующее. Прежде всего,
𝐸α𝑔

2
α(𝑋) <∞, поскольку значения 𝑌 ограничены. Тем самым, в 2.4 из рассмот­

рения можно исключить все (борелевские) функции 𝑓 такие, что 𝐸α𝑓
2(𝑋) =∞,

и считать последний интеграл конечным. Тогда по определению 𝑃α имеем

𝐸α(𝑌 − 𝑓(𝑋))2 =(1− α)𝐸(𝑌 − 𝑓(𝑋))2 + α

∫︁
[0,1]𝑑

𝑓 2(𝑥)𝑑𝑥

=(1− α)𝐸(𝑌 − 𝑔(𝑋))2 + 𝐿(𝑓),

где

𝐿(𝑓) = (1− α)𝐸(𝑔(𝑋)− 𝑓(𝑋))2 + α

∫︁
[0,1]𝑑

𝑓 2(𝑥)𝑑𝑥.
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Перепишем 𝐿(𝑓) в следующем виде:

𝐿(𝑓) = (1− α)
∫︁
𝐴

(𝑔(𝑥)− 𝑓(𝑥))2𝑃𝑋(𝑑𝑥)

+

∫︁
{𝑥∈S∖𝐴:ρ(𝑥)>0}

[︀
(1− α)(𝑔(𝑥)− 𝑓(𝑥))2ρ(𝑥) + α𝑓 2(𝑥)

]︀
𝑑𝑥

+α

∫︁
[0,1]𝑑∖S∪{𝑥∈S∖𝐴:ρ(𝑥)=0}

𝑓 2(𝑥)𝑑𝑥.

Поскольку минимум выражения

(1− α)(𝑎− 𝑧)2𝑏+ α𝑧2

по 𝑧 при 𝑏 > 0 достигается в точке

𝑧* =
(1− α)𝑎𝑏
α+ (1− α)𝑏

,

то минимум 𝐿(𝑓) очевидным образом достигается на 𝑔α, заданном по форму­
ле 2.5. Перепишем равенство выше в виде

(1− α)(𝑎− 𝑧)2𝑏+ α𝑧2 = (α+ (1− α)𝑏)(𝑧 − 𝑧*)
2 +

α(1− α)𝑎2𝑏
α+ (1− α)𝑏

.

Следовательно, с точностью до слагаемого 𝑅α, не зависящего от 𝑓 , для
𝑔α из (2.5) имеет место соотношение

𝐿(𝑓) = (1− α)‖𝑔α − 𝑓‖2𝑃𝑋
+ α‖𝑔𝑎 − 𝑓‖2λ +𝑅α,

где ‖ · ‖µ – это 𝐿2-норма относительно меры µ = 𝑃𝑋 или µ = λ, и учитыва­
ем, что 𝑔α равно нулю вне S или при ρ(𝑥) = 0 и 𝑔α = 𝑔 на 𝐴. Поскольку
все решения задачи 2.4 определены 𝑃𝑋- и λ-п. н. однозначно, это соотношение
с 𝐿(𝑓) будет справедливо и для любого другого решения 𝑔α, не обязательно
заданного по формуле 2.5.

Пусть теперь 𝑠α — классификатор из условия теоремы. Для проверки свой­
ства (i) достаточно показать, что 𝑃 (𝑠(𝑋) = 𝑠α(𝑋)) = 1, где 𝑠 – байесовский
классификатор из (2.3) для 𝑔(𝑥) = 𝐸(𝑌 |𝑋 = 𝑥) на [0, 1]𝑑. Последнее эквива­
лентно тому, что
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𝑃 (𝑔(𝑋)𝑔α(𝑋) > 0 или 𝑔(𝑋) = 𝑔α(𝑋) = 0) = 1.

Поскольку 𝑔α в определении 𝑠α определено однозначно 𝑃𝑋-п. н. и может
быть задано формулой 2.5, можно считать, что 𝑔α всюду задано этой формулой.
Осталось заметить, что условие

𝑔(𝑥)𝑔α(𝑥) > 0 или 𝑔(𝑥) = 𝑔α(𝑥) = 0

выполнено по определению в тех случаях, когда либо 𝑥 ∈ 𝐴, либо ρ(𝑥) > 0 и
𝑥 ∈ S ∖ 𝐴; при этом остальные случаи имеют нулевую вероятность:

𝑃 (ρ(𝑋) = 0,𝑋 ∈ S ∖ 𝐴) = 𝑃 (𝑋 /∈ S) = 0.

Доказательство свойства (i) завершено.
Свойство (ii) следует из (2.5) и того, что 𝑔α в определении 𝑠α определе­

но однозначно λ-п. н.
Теорема доказана.
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Б.2 Доказательство теорем. 4

Доказательство опубликовано в работе [4].

Б.3 Используемые теоремы и леммы

В приложении приведены все используемые теоремы, определения и лем­
мы, не требующие дополнений.

Определение 1. Сходимости
Сходимость по вероятности.

𝑋𝑛
𝑃−→ 𝑋 ⇐⇒ ∀ ε > 0 : lim

𝑛→∞
P(|𝑋𝑛 −𝑋| > ε) = 0.

Сходимость почти наверное.

𝑋𝑛
𝑎.𝑠.−−→ 𝑋 ⇐⇒ P

(︁
lim
𝑛→∞

𝑋𝑛 = 𝑋
)︁
= 1.

Сходимость в 𝐿2(𝑃𝑋).

𝑋𝑛
𝐿2(𝑃𝑋)−−−−→ 𝑋 ⇐⇒ E[(𝑋𝑛 −𝑋)2]→ 0.

Норма в пространстве 𝐿2(𝑃𝑋):

‖𝑓‖𝐿2(𝑃𝑋) =
(︁∫︁
|𝑓(𝑥)|2 𝑑𝑃𝑋(𝑥)

)︁1/2

.

Лемма 1. Бореля–Кантелли

lim sup
𝑛→∞

E𝑛 =
∞⋂︁

𝑚=1

⋃︁
𝑛⩾𝑚

E𝑛.

Если
∑︀∞

𝑛=1 P(E𝑛) <∞, то P(lim supE𝑛) = 0.

Теорема 5. О сходимости персептрона к целевой функции. Согласно
[93].

Пусть 𝑌 = 𝑔(𝑋)+ξ на компакте 𝐾 = [0,1]𝑑, (𝑋𝑖,𝑌𝑖)
𝑛
𝑖=1 — i.i.d., 𝑝𝑋 ограни­

чена на 𝐾, E[ξ | 𝑋] = 0, Var(ξ) ⩽ σ2ξ, активация η(𝑡) = ReLU(𝑡). Обозначим
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через 𝒩η(𝑆nnz,𝑛,𝐵𝑛,𝐿𝑛) класс полносвязных ReLU-сетей с 𝐿𝑛 слоями, не более
𝑆nnz,𝑛 ненулевых параметров и ограничением |𝑤| ⩽ 𝐵𝑛; 𝑔𝐿𝑛

— ERM-оценка по
MSE, с клиппингом выхода [−𝑇max,𝑇max].

Пусть

ℱ𝑀𝐹 ,𝐽,α,β =
{︁
𝑓 =

𝑀𝐹∑︁
𝑚=1

𝑓𝑚 1𝑅𝑚
: 𝑓𝑚 ∈ 𝒞β([0,1]𝑑), 𝑅𝑚 ∈ ℛα,𝐽

}︁
,

где β = 𝑞 + 𝑠, 𝑠 ∈ (0,1], а ℛα,𝐽 — пересечения областей вида

ℛα,𝐽 =
{︁
𝑅 =

𝐽⋂︁
𝑘=1

𝑆ζ𝑘𝑖𝑘,𝑢𝑘
: 𝑢𝑘 ∈ 𝒞α([0,1]𝑑−1), ζ𝑘 ∈ {⩽ , ⩾}, 𝑖𝑘 ∈ {1, . . . ,𝑑}

}︁
,

𝑆⩽
𝑖,𝑢 = {𝑥 ∈ [0,1]𝑑 : 𝑥𝑖 ⩽ 𝑢(𝑥1, . . . ,𝑥𝑖−1,𝑥𝑖+1, . . . ,𝑥𝑑) }.

Если 𝑔 ∈ ℱ𝑀𝐹 ,𝐽,α,β, то существуют 𝑐IF,𝑐
′
IF,𝐶IF > 0, целое 𝑠 ⩾ 2, 𝑇max ⩾

‖𝑔‖∞ и архитектура (𝑆nnz,𝑛,𝐵𝑛,𝐿𝑛) такая, что

𝑆nnz,𝑛 = 𝑐′IFmax
{︁
𝑛

𝑑
2β+𝑑 , 𝑛

𝑑−1
α+𝑑−1

}︁
, 𝐵𝑛 ⩽ 𝑐IF 𝑛

𝑠, 𝐿𝑛 ⩽ 𝑐IF

(︁
1+max{β𝑑 ,

α
2(𝑑−1)}

)︁
,

и с вероятностью ⩾ 1− 𝑐IF𝑛
−2 выполняется

‖𝑔𝐿𝑛
− 𝑔‖2𝐿2(𝑃𝑋) ⩽ 𝐶IFmax

{︁
𝑛−

2β
2β+𝑑 , 𝑛−

α
α+𝑑−1

}︁
(log 𝑛)2.

Теорема 6. Об инъективности 𝑥 ↦→ |𝐴𝑥+ 𝑏|. Согласно [94].
Для 𝐴 ∈ R𝑚×𝑑, 𝑏 ∈ R𝑚 положим

𝑀𝐴,𝑏(𝑥) =
(︀
|𝑎⊤1 𝑥+ 𝑏1|, . . . ,|𝑎⊤𝑚𝑥+ 𝑏𝑚|

)︀
.

Если 𝑚 ⩾ 2𝑑 и выполняется условие generic-типа:

∀𝐼 ⊆ {1, . . . ,𝑚} :
(︀
𝑏𝐼 ∈ span(𝐴𝐼)

)︀
⇒ span(𝐴𝐼𝑐) = R𝑑,

то 𝑀𝐴,𝑏 инъективно.
Подразумевается что span(𝐴𝐼) – линейная оболочка по столбцам мат­

рицы, а span(𝐴𝐼𝑐) – линейная оболочка по строкам матрицы.
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Теорема 7. О билипшицевости 𝑥 ↦→ |𝐴𝑥+ 𝑏|. Согласно [94].
Если отображение из теорем. 6 инъективно и Ω ⊂ R𝑑 — компакт, то

существуют константы 𝐶Lip,𝑐Lip > 0, зависящие от (𝐴,𝑏) и Ω, такие что
для всех 𝑥,𝑦 ∈ Ω

𝑐Lip
1 + ‖𝑥‖+ ‖𝑦‖

‖𝑥− 𝑦‖ ⩽ ‖𝑀𝐴,𝑏(𝑥)−𝑀𝐴,𝑏(𝑦)‖ ⩽ 𝐶Lip‖𝑥− 𝑦‖.

Теорема 8. О сохранении кусочной гладкости композиции функций.
Согласно [95].

Если 𝐹 и φ — кусочно-гладкие функции, то 𝐹 ∘φ также кусочно-глад­
кая.

Теорема 9. О кусочной аффинности обратного отображения. Соглас­
но [96].

Если φ — кусочно-аффинное инъективное отображение с невырожден­
ными областями линейности, то φ−1 также кусочно-аффинна.

Теорема 10. О состоятельности гистограмной регрессии. Согласно
[97].

Пусть по выборке 𝑇𝑛 = {(𝑋𝑖,𝑌𝑖)}𝑛𝑖=1 строится разбиение Π𝑛 = ψ𝑛(𝑇𝑛).
Для компакта 𝑉 обозначим 𝑁cells(Π : 𝑉 ) — максимум числа ячеек, пересека­
ющих 𝑉 ; многоклассовая функция роста Δ*𝑛(Π) = max𝑥1,...,𝑥𝑛

Δ((𝑥1, . . . ,𝑥𝑛),Π).
Обозначим ячейку с 𝑥 через 𝒜𝑛(𝑥) и диаметр множества через diam(·).

Если при 𝑛→∞ выполняются:

(a)
𝑁cells(Π𝑛 : 𝑉 )

𝑛
→ 0 ∀𝑉 ⊂ R𝑑; (b)

logΔ*𝑛(Π𝑛)

𝑛
→ 0;

(c) ∀γ > 0, δ ∈ (0,1) : inf
S:𝑃 (S)⩾1−δ

𝑃
(︀
𝑥 : diam(𝒜𝑛(𝑥) ∩ S) > γ

)︀ 𝑎.𝑠.−−→ 0,

то гистограммная регрессия

𝑟𝑛(𝑥) =

∑︀𝑛
𝑖=1 𝑌𝑖 1{𝑋𝑖 ∈ 𝒜𝑛(𝑥)}∑︀𝑛
𝑖=1 1{𝑋𝑖 ∈ 𝒜𝑛(𝑥)}

состоятельна:
∫︀
|𝑟𝑛(𝑥)− 𝑔(𝑥)|2 𝑑𝑃𝑋(𝑥)→ 0, то есть 𝑟𝑛

𝐿2(𝑃𝑋)−−−−→ 𝑔.

Теорема 11. О числе ячеек ReLU-MLP. Согласно [98].
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Пусть 𝐿𝑛 — число скрытых слоёв, 𝑛𝑙 — число нейронов в слое 𝑙, 𝑑 —
размерность входа. Тогда для ReLU-сети

𝑅max(𝑛) ⩽
𝐿𝑛∏︁
𝑙=1

min(𝑑,𝑛𝑙)∑︁
𝑗=0

(︂
𝑛𝑙

𝑗

)︂
,

min(𝑑,𝑛𝑙)∑︁
𝑗=0

(︂
𝑛𝑙

𝑗

)︂
= Θ

(︀
𝑛
min(𝑑,𝑛𝑙)
𝑙

)︀
.

Определение 2. Функция роста.
Для класса бинарных гипотез 𝐻

Π𝐻(𝑚) = max
{𝑥1,...,𝑥𝑚}⊂𝑋

⃒⃒
{(ℎ(𝑥1), . . . ,ℎ(𝑥𝑚)) : ℎ ∈ 𝐻}

⃒⃒
.

Определение 3. VC-размерность.
Это максимальное число точек, которое класс функций способен разде­

лить всеми возможными способами.

Лемма 2. Сауэра–Шелаха
Если VCdim(𝐻) = 𝑍 <∞, то для всех 𝑚 ∈ N:

Π𝐻(𝑚) ⩽
𝑍∑︁
𝑖=0

(︂
𝑚

𝑖

)︂
, в частности, при 𝑚 ⩾ 𝑍 : Π𝐻(𝑚) ⩽

(︁𝑒𝑚
𝑍

)︁𝑍

.

Теорема 12. О VC-размерности пересечений полупространств. Со­
гласно [99].

Для класса всех пересечений не более чем 𝑀hs аффинных полупро­
странств в R𝑑:

VCdim = Θ
(︀
𝑑𝑀hs log𝑀hs

)︀
.

Теорема 13. О разбиении случайными гиперплоскостями. Согласно
[100].

Пусть 𝐻hp — число случайных аффинных гиперплоскостей (из непрерыв­
ного распределения), 𝐾 ⊂ R𝑑 — компакт, 𝐷 = diam(𝐾), а {𝐶𝑗} — ячейки
разбиения 𝐾 и γ > 0. Если

𝐻hp ≳ γ−12ω(𝐾)2𝐷10,

то
P(∀𝑗 : diam(𝐶𝑗) ⩽ γ) ⩾ 1− 2 exp

(︀−𝑐 ε4𝐻hp

𝐷4

)︀
.
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Б.3.1 Необходимые леммы

Лемма 3. Из сходимости 𝑋𝑛
𝐿2(𝑃𝑋)−−−−→ 𝑋 следует 𝑋𝑛

𝑃−→ 𝑋.

Доказательство. Согласно неравенству Маркова ∀ε > 0:

P(|𝑋𝑛 −𝑋| ⩾ ε) = P((𝑋𝑛 −𝑋)2 ⩾ ε2) ⩽
E[(𝑋𝑛 −𝑋)2]

ε2
. (Б.1)

Так как 𝑋𝑛
𝐿2(𝑃𝑋)−−−−→ 𝑋, по определению

E[(𝑋𝑛 −𝑋)2]→ 0. (Б.2)

В неравенстве Маркова E[(𝑋𝑛−𝑋)2]
ε2

→ 0, следовательно

P(|𝑋𝑛 −𝑋| ⩾ ε)→ 0, (Б.3)

откуда по определению сходимости по вероятности следует 𝑋𝑛
𝑃−→ 𝑋. Лемма

3 доказана.

Лемма 4. Мера Лебега λ𝑚(𝑑+1) generic-множества из теорем. 6, теорем. 7
равна 1.

Доказательство. Рассмотрим дополнение к generic-множеству. Как видно по
условию инъективности, неинъективны такие 𝐴 и 𝑏, что

∃𝐼 : 𝑏𝐼 ∈ span(𝐴𝐼), span(𝐴𝐼𝑐) ̸= R𝑑. (Б.4)

Случай 1: |𝐼| ⩽ 𝑑 (тогда |𝐼𝑐| ⩾ 𝑚 − 𝑑 ⩾ 𝑑). Тогда 𝐴𝐼𝑐 имеет хотя бы
𝑑 строк, и попадание в дополнение generic-множества возможно только если
rank(𝐴𝐼𝑐) < 𝑑. Множество 𝑍𝐼 = {𝐴 : rank(𝐴𝐼𝑐) < 𝑑} задаётся обращением в
ноль всех миноров 𝑑×𝑑 матрицы 𝐴𝐼𝑐. Это множество является множеством кор­
ней полинома, а согласно [101] множество корней аналитической функции в R𝑑

имеет меру Лебега 0. Следовательно, и λ𝑚𝑑, и λ𝑚(𝑑+1) меры дополнения равны 0.
Случай 2: |𝐼| > 𝑑 (тогда |𝐼𝑐| ⩽ 𝑑− 1). Здесь rank(𝐴𝐼𝑐) < 𝑑 всегда, поэто­

му элемент не generic тогда и только тогда, когда 𝑏𝐼 ∈ span(𝐴𝐼). Полученное
множество

𝐵𝐼(𝐴) = {𝑏 ∈ R𝑚 : 𝑏𝐼 ∈ span(𝐴𝐼)} (Б.5)
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является линейным подпространством в R𝑚 меньшей размерности. Для любого
такого подпространства мера Лебега λ𝑚 = 0. Следовательно, и λ𝑚(𝑑+1) этого
множества также равна 0.

Так как дополнение generic-множества есть конечное объединение мно­
жеств меры 0, его λ𝑚(𝑑+1) мера также равна 0. Следовательно, мера Лебега
generic-множества равна 1. Лемма 4 доказана.

Введём следующие обозначения: 𝒜𝑛 — класс всех возможных ячеек.
𝑋1:𝑛 = {𝑥1, . . . ,𝑥𝑛} ⊂ 𝑉 — фиксированный набор точек.
Π — семейство разбиений пространства.
𝑁cells(Π : 𝑉 ) — максимум числа ячеек, пересекающих компакт 𝑉 для Π.
Δ*(𝑋1:𝑛,Π) — многоклассовая функция роста (каждой точке присваивается ин­
декс ячейки, к которой она принадлежит).
Δ(𝑋1:𝑛,𝒜𝑛) — бинарная функция роста класса ячеек 𝒜𝑛 (каждая ячейка рас­
сматривается отдельно).

Лемма 5.

Δ*(𝑋1:𝑛,Π) ⩽
𝑁max∑︁
𝑡=1

(︀
Δ(𝑋1:𝑛,𝒜𝑛)

)︀𝑡
, (Б.6)

где 𝑁max := 𝑁cells(Π : 𝑉 ).

Доказательство. Зафиксируем число ячеек 𝑡. Все разбиения 𝑃 ∈ Π𝑡 задаются
набором ячеек 𝐶1, . . . ,𝐶𝑡 ∈ 𝒜𝑛. Каждое разбиение индуцирует 𝑡-классовую при­
надлежность точек к ячейкам. Так как бинарный паттерн принадлежности по
каждой ячейке принимает не более чем Δ(𝑋1:𝑛,𝒜𝑛) значений, то композиция 𝑡

таких паттернов принимает не более чем (Δ(𝑋1:𝑛,𝒜𝑛))
𝑡 значений. Следователь­

но, для фиксированного 𝑡

Δ*(𝑋1:𝑛,Π𝑡) ⩽
(︀
Δ(𝑋1:𝑛,𝒜𝑛)

)︀𝑡
. (Б.7)

Если число ячеек произвольно от 1 до верхней границы 𝑁max, то имеет ме­
сто неравенство

Δ*(𝑋1:𝑛,Π) ⩽
𝑁max∑︁
𝑡=1

(︀
Δ(𝑋1:𝑛,𝒜𝑛)

)︀𝑡
, (Б.8)

откуда следует грубая оценка

Δ*(𝑋1:𝑛,Π) ⩽ 𝑁max ·
(︀
Δ(𝑋1:𝑛,𝒜𝑛)

)︀𝑁max. (Б.9)

Лемма 5 доказана.
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Б.3.2 Сходимость разности нейросетевой и гистограммной
регрессии

Требуемый факт доказывается через сходимость разности, используя це­
левую функцию 𝑔(𝑥):

𝑔(𝑥) = E[𝑌 | 𝑋 = 𝑥], 𝑥 ∈ 𝐾. (Б.10)

Если 𝑐𝑛(𝑋)
𝑃−→ 𝑔(𝑋) и ℎ𝑛(𝑋)

𝑃−→ 𝑔(𝑋), то в таком случае:

𝑐𝑛(𝑋)− ℎ𝑛(𝑋)
𝑃−→ 0. (Б.11)

И, следовательно, по определению сходимости по вероятности

lim
𝑛→∞

P(|𝑐𝑛(𝑥)− ℎ𝑛(𝑥))| > ε) = 0. (Б.12)

Таким образом, в пределе вероятность события, состоящего в том, что вы­
ход персептрона не совпадает с выходом гистограммной регрессии, равна нулю.
Это позволяет говорить об асимптотической эквивалентности персептрона и ги­
стограммной регрессии, а также возможности оценки гистограммной регрессии
при помощи вызодного значения персептрона.

Б.3.3 Сходимость персептрона к целевой функции

В данном пункте воспользуемся теорем. 5. Так как теорема напрямую
не предусматривает заморозку первого слоя персептрона, представим фиксиро­
ванный первый слой в виде отображения из исходного пространства в новое
пространство признаков:

𝑧 = |𝑊1𝑥+ 𝑏1| =: φ(𝑥), 𝑥 = φ−1(𝑧). (Б.13)

Тогда выход персептрона можно записать в виде

𝑐𝑛(𝑥) = 𝑓θ,𝑛(φ(𝑥)) = 𝑓θ,𝑛(𝑧), (Б.14)

где 𝑓θ,𝑛 — обучаемая часть персептрона. Целевая функция в новых координатах:
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𝑔(𝑧) = 𝑔(φ−1(𝑧)). (Б.15)

Задача сходимости переформулируется как

𝑓θ,𝑛(𝑍)
𝑃−→ 𝑔(𝑍). (Б.16)

Так как это равносильно

𝑓θ,𝑛(φ(𝑋))
𝑃−→ 𝑔(φ−1(φ(𝑋))), (Б.17)

то получаем

𝑐𝑛(𝑋)
𝑃−→ 𝑔(𝑋). (Б.18)

Чтобы выкладки были корректны, необходимо потребовать от отображе­
ния, порождаемого замороженным слоем:

– инъективности, чтобы существовало обратное отображение;
– сохранения кусочной гладкости 𝑔(𝑧), чтобы теорема теорем. 5 была

применима;
– билипшицевости и ограниченности липшицевых констант, чтобы кон­

станты гладкости оставались контролируемыми, в том числе для
получения корректных скоростей сходимости.

Покажем каждый из необходимых пунктов ниже.
Инъективность.
Согласно теорем. 6 и доказанной лемм. 4 и так как 𝑊1 и 𝑏1 взяты незави­

симо из непрерывного распределения, при условии на число нейронов 𝑟𝑛 ⩾ 2𝑑,
можно утверждать, что

P(φ инъективно) = 1.

Билипшицевость.
Согласно теорем. 7 и лемм. 4, а также с учётом того, что изначальная

задача рассматривается на компакте 𝐾, можно утверждать, что с вероятностью
1 отображение φ билипшицево и имеет аналитические оценки 𝑐Lip и 𝐶Lip.

Сохранение кусочной гладкости.
Покажем, что при кусочно-гладкой 𝑔 и замене переменных при помощи

φ−1, кусочная гладкость сохраняется. Согласно теорем. 8, если 𝐹 иφ−1 кусочно­
гладкие, то 𝐹 ∘φ−1 тоже кусочно-гладкая функция. Согласно теореме теорем. 9,
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если φ — кусочно-линейное отображение, для которого с вероятностью 1 (при
попадении в generic множество теорем. 6) ранг всех рассматриваемых под­
матриц, формирующих ячейки, является полным, и следовательно области
линейности описаны невырожденными матрицами, то φ−1 также является ку­
сочно-линейной функцией. Таким образом, так как инъективное отображение,
заданное замороженным первым слоем, является кусочно-линейной функцией,
можно утверждать, что 𝑔(𝑧) = 𝑔(φ−1(𝑧)) как композиция кусочно-гладких
функций является кусочно-гладкой функцией. Для применения теорем. 5 в
пространстве признаков 𝑧 = φ(𝑥) необходимо, чтобы распределение случай­
ного вектора 𝑧 обладало ограниченной плотностью на образе компакта. Это
выполняется, если исходный 𝑥 имеет ограниченную плотность на компакте 𝐾,
а φ является билипшицевым отображением: тогда распределение 𝑧 абсолютно
непрерывно, и его плотность ограничена константами, зависящими от липши­
цевых констант.

Сходимость по вероятности.
Продемонстрируем, что из результатов теоремы теорем. 5 следует сходи­

мость по вероятности к целевой функции.
Согласно теорем. 5:

ℛ𝑛 = E
(︀
(𝑐𝑛 − 𝑔)2

)︀
, (Б.19)

P(ℛ𝑛 ⩽ 𝐶ρ𝑛) ⩾ 1− 𝑐 𝑛−2, (Б.20)

где ρ𝑛 → 0 при 𝑛 → ∞.
Обозначим событие

E𝑛 = {ℛ𝑛 ⩽ 𝐶ρ𝑛}, E𝑐
𝑛 = {ℛ𝑛 ⩾ 𝐶ρ𝑛}. (Б.21)

Тогда

∞∑︁
𝑛=1

P(E𝑐
𝑛) ⩽

∞∑︁
𝑛=1

𝑐 𝑛−2 <∞. (Б.22)

По лемме Бореля–Кантелли получаем

P(E𝑐
𝑛 бесконечно часто) = 0, (Б.23)

то есть
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P
(︀
E𝑛 для почти всех 𝑛

)︀
= 1. (Б.24)

Следовательно,

ℛ𝑛 → 0, E
(︀
(𝑐𝑛 − 𝑔)2

)︀
→ 0, (Б.25)

что можно записать как:

𝑐𝑛(𝑥)
𝐿2(𝑃𝑋)−−−−→ 𝑔(𝑥). (Б.26)

Откуда, согласно лемм. 3, следует:

𝑐𝑛(𝑋)
𝑃−→ 𝑔(𝑋) (Б.27)

Таким образом, согласно теорем. 5, на компакте 𝐾 при ограниченной
плотности и подходящей целевой функции 𝑔(𝑥), для последовательности персеп­
тронов с соответствующей архитектурой и кусочно-линейными активациями,
обучаемых по MSE, при 𝑛 → ∞ выполняется

𝑐𝑛(𝑋)
𝑃−→ 𝑔(𝑋). (Б.28)

Так как

|𝑥| = ReLU(𝑥) + ReLU(−𝑥), (Б.29)

то нейрон с модульной функцией активации можно представить как два
нейрона с кусочно линейными активациями. Следовательно, все изложенные
выкладки корректны и для моделей с модульной функцией активации (с точ­
ностью до констант).

Б.3.4 Сходимость гистограммной регрессии к целевой функции

Воспользуемся теорем. 10. Для её применения необходимо выполнение
трёх условий. Рассмотрим каждое из них в контексте гистограммы, построен­
ной по ячейкам многослойного персептрона.

Условие (а).
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В данном пункте необходимо оценить рост числа ячеек персептрона. При­
меним оценку максимального числа ячеек из теоремы теорем. 11. Для случая,
когда имеется один скрытый слой ширины 𝑟𝑛 и 𝐿𝑛 скрытых слоёв ширины
𝑘𝑛, получаем:

𝑅max(𝑛) = 𝑂
(︁
𝑘 𝐿𝑛 min(𝑑,𝑘𝑛)
𝑛 𝑟 𝑑

𝑛

)︁
. (Б.30)

Так как активация в виде модуля, аналогично ReLU, разбивает пространство
на два полупространства, действуя в каждом линейно, указанная оценка со­
храняется.

Для выполнения условия (а) необходимо требовать:

𝑘 𝐿𝑛 min(𝑑,𝑘𝑛)
𝑛 𝑟 𝑑

𝑛 = 𝑜(𝑛). (Б.31)

В случае фиксированной размерности входа 𝑑 и числа нейронов в скрытых
слоях не меньше 𝑑, условие принимает вид:

𝑘 𝐿𝑛𝑑
𝑛 𝑟𝑑𝑛 = 𝑜(𝑛). (Б.32)

Таким образом, имеется чёткое ограничение на рост ширины и глубины сети
с ростом числа данных.

Условие (б).
В данном пункте необходимо показать ограничение на скорость роста

богатства возможных разбиений пространства. По лемм. 5 верхняя оценка мно­
гоклассовой функции роста выражается через бинарную:

Δ*𝑛(Π𝑛,𝑉 ) ⩽ 𝑁cells(Π𝑛 : 𝑉 )Δ𝑛(𝒜𝑛,𝑉 )𝑁cells(Π𝑛:𝑉 ). (Б.33)

В результате математических преобразований и разделив на 𝑛, получаем:

1

𝑛
logΔ*𝑛(Π𝑛,𝑉 ) ⩽

log𝑁cells(Π𝑛 : 𝑉 )

𝑛
+

𝑁cells(Π𝑛 : 𝑉 )

𝑛
log

(︀
Δ𝑛(𝒜𝑛,𝑉 )

)︀
. (Б.34)

Применяя лемму Сауэра–Шелаха лемм. 2, обозначим

𝑍𝑛 = VCdim(𝒜𝑛). (Б.35)

По лемме Сауэра–Шелаха, при 𝑍𝑛 ⩽ 𝑛:

Δ𝑛(𝒜𝑛,𝑉 ) ⩽

(︂
𝑒 𝑛

𝑍𝑛

)︂𝑍𝑛

. (Б.36)
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Следовательно:

logΔ𝑛(𝒜𝑛,𝑉 ) = 𝑂
(︀
𝑍𝑛 log 𝑛

)︀
, (Б.37)

и

1

𝑛
logΔ*𝑛(Π𝑛,𝑉 ) ⩽

log𝑁cells(Π𝑛 : 𝑉 )

𝑛
+

𝑁cells(Π𝑛 : 𝑉 )

𝑛
𝑍𝑛 log 𝑛. (Б.38)

Первое слагаемое стремится к нулю по условию (а). Следовательно, необ­
ходимо требовать стремления к нулю второго слагаемого. Подставим оценку на
число ячеек из условия (а):

𝑘
𝐿𝑛 min(𝑑,𝑘𝑛)
𝑛 𝑟 𝑑

𝑛

𝑛
𝑍𝑛 log 𝑛 → 0. (Б.39)

Так как 𝑍𝑛 — VC-размерность класса ячеек многослойного персептрона,
где каждая ячейка задаётся пересечением конечного числа аффинных полупро­
странств, то по теорем. 12:

𝑍𝑛 ⩽ 𝑑𝑀𝑛 log𝑀𝑛, (Б.40)

где 𝑀𝑛 — число нейронов в сети.
Для сети с одним скрытым слоем ширины 𝑟𝑛 и 𝐿𝑛 скрытыми слоями оди­

наковой ширины 𝑘𝑛:

𝑍𝑛 ⩽ 𝑑 (𝑘𝑛𝐿𝑛 + 𝑟𝑛) log(𝑘𝑛𝐿𝑛 + 𝑟𝑛). (Б.41)

Таким образом, условие (б) принимает вид:

𝑘 𝐿𝑛 min(𝑑,𝑘𝑛)
𝑛 𝑟 𝑑

𝑛 𝑑 (𝑘𝑛𝐿𝑛 + 𝑟𝑛) log(𝑘𝑛𝐿𝑛 + 𝑟𝑛)
log 𝑛

𝑛
→ 0. (Б.42)

Условие (в).
В данном пункте необходимо показать, что при росте числа ячеек персеп­

трона диаметры ячеек стремятся к нулю.
В статье [102] авторы, опираясь на теорем. 13 о разбиении пространства

случайными гиперплоскостями, утверждают, что для слоя нейронов с кусочно­
линейной функцией активации и случайными гауссовыми весами разбиение
входного пространства на ячейки индуцирует разбиение случайными гипер­
плоскостями.
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Так как для глубокой сети с кусочно-линейными активациями разбиение
входа, индуцированное композицией до слоя 𝑙, является уточнением разбиения,
индуцированного до слоя 𝑙−1 (каждый следующий слой дробит регионы на бо­
лее мелкие части). Поэтому на любом фиксированном компакте верхняя оценка
на диаметры ячеек, заданная после первого слоя, сохраняется (не ухудшается)
для всей глубокой сети. Это утверждение верно на generic-множествах парамет­
ров, то есть с вероятностью 1.

Введём событие:

E𝐻hp
(ε) = { ∀𝒜𝐻hp

⊂ 𝐾 : diam(𝒜𝐻hp
) ⩽ ε𝐷 }, (Б.43)

где 𝒜𝐻hp
— ячейка, полученная в результате разбиения компакта 𝐾 𝐻hp слу­

чайными гиперплоскостями, а 𝒜𝐻hp
(𝑥) — ячейка, содержащая точку 𝑥.

Для произвольного γ > 0 и множества S такого, что 𝑃𝑋(S) ⩾ 1− δ, и при
событии E𝐻hp

(ε𝐷) с ε𝐷 ⩽ γ, выполняется:

diam(𝒜𝐻hp
(𝑥) ∩ S) ⩽ diam(𝒜𝐻hp

(𝑥)) ⩽ ε𝐷 ⩽ γ, (Б.44)

и
1{diam(𝒜𝐻hp

(𝑥) ∩ S) > γ} = 0. (Б.45)

Следовательно:

inf
S:𝑃𝑋(S)⩾1−δ

P𝑋

(︀
diam(𝒜𝐻hp

(𝑥)∩S) > γ
)︀

⩽ P𝑋

(︀
diam(𝒜𝐻hp

(𝑥)∩𝐾) > γ
)︀

⩽ 1{E𝐻hp
(γ) 𝑐}.

(Б.46)
Так как по теорем. 13

P
(︀
E𝐻hp

(γ)
)︀

⩾ 1− 2 𝑒
−𝑐γ4𝐻hp

𝐷4 , (Б.47)

то математическое ожидание по всем разбиениям удовлетворяет:

E
[︂

inf
S:𝑃𝑋(S)⩾1−δ

P𝑋

(︀
diam(𝒜𝐻hp

(𝑥) ∩ S) > γ
)︀]︂

⩽ P
(︀
E𝐻hp

(γ) 𝑐
)︀

⩽ 2 𝑒
−𝑐γ4𝐻hp

𝐷4 .

(Б.48)

Покажем сходимость почти наверное при 𝑛→∞ и числе гиперплоскостей
(нейронов первого слоя) 𝑟𝑛, если

𝑟𝑛 ⩾ 𝐶 γ−12ω2(𝐾)𝐷10, (Б.49)
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и ∞∑︁
𝑛=1

𝑒
−𝑐γ4𝑟𝑛

𝐷4 < ∞, (Б.50)

где 𝐷 – диаметр компакта. Тогда по лемме Бореля–Кантелли:

inf
S:𝑃𝑋(S)⩾1−δ

P𝑋

(︀
diam(𝒜𝑟𝑛(𝑥) ∩ S) > γ

)︀
⩽ 1{E𝑟𝑛(γ)

𝑐} 𝑎.𝑠.−−→ 0. (Б.51)

Таким образом, ограничения на 𝑟𝑛 для выполнения условия (в) имеют вид:
∞∑︁
𝑛=1

𝑒
−𝑐γ4𝑟𝑛

𝐷4 < ∞, 𝑟𝑛 ⩾ 𝐶 γ−12ω2(𝐾)𝐷10. (Б.52)

Следовательно, при случайной инициализации параметров из непрерыв­
ного распределения условие (в) выполняется почти наверное при выполнении
введённых ограничений на ширину первого слоя.

Так как последующие слои не увеличивают диаметры ячеек, а нейроны
первого слоя заморожены, то при верном подборе ширины 𝑟𝑛 и инициализа­
ции всех параметров из непрерывного распределения условие (в) выполняется
почти наверное.

Таким образом, при выполнении ограничений на архитектуру, нало­
женных в процессе доказательства пунктов (а), (б), (в), теорема Нобеля
выполняется, и, следовательно,

ℎ𝑛(𝑥)
𝐿2(𝑃𝑋)−−−−→ 𝑔(𝑥). (Б.53)

Откуда, согласно лемм. 3, следует:

ℎ𝑛(𝑋)
𝑃−→ 𝑔(𝑋). (Б.54)

Так как

𝑐𝑛(𝑋)
𝑃−→ 𝑔(𝑋) (Б.55)

и
ℎ𝑛(𝑋)

𝑃−→ 𝑔(𝑋), (Б.56)

имеет место сходимость разности выхода персептрона и гистограммной регрес­
сии:

𝑐𝑛(𝑋)− ℎ𝑛(𝑋)
𝑃−→ 0. (Б.57)

Теорема доказана.
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